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Abstract

This thesis is about various aspects of linear time{varying systems and nonstationary processes (to-

gether nonstationary environments). Such nonstationary environments play an important role in

modern communication engineering, particularly as models for natural signals or time{varying com-

munication channels.

Emphasis is on time{frequency{parametrized representations of nonstationary environments, i.e.,

time{varying power spectra and time{varying transfer functions. Introduction of the generalized Weyl

correspondence enables a uni�ed formulation of classical, so far seemingly disparate de�nitions like

Priestley's evolutionary spectrum, the Wigner{Ville spectrum, Zadeh's time{varying transfer func-

tion (Kohn{Nirenberg symbol) and the Weyl symbol. Nonstationary Wiener �ltering provides an

illustrative example for the limited applicability of these time{frequency concepts to a straightfor-

ward generalization of frequency domain solutions. We introduce a fundamental classi�cation into

underspread/overspread environments based on characterizing the underlying linear operator by the

essential support of its spreading function. For underspread environments it is shown that the time{

frequency|parametrized representations get essentially de�nition{independent and can be used in

the same manner as the frequency{parametrized representations of stationary environments. Com-

bining the practical e�ciency of time{frequency{parametrized representations with the theoretical

optimality of a diagonalizing transform leads to window matching criteria for the short{time Fourier

transform/Gabor expansion (discrete/continuous Weyl{Heisenberg expansion) of signals and linear

systems.

Zusammenfassung

Diese Dissertation behandelt die Theorie linearer zeitvarianter Systeme und nichtstation�arer Prozesse

(zusammen nichtstation�are Umgebungen). Nichtstation�are Umgebungen stellen ein wichtiges aktuelles

Forschungsgebiet der modernen Nachrichtentechnik dar. Sie sind insbesonders bei der Modellierung

nat�urlicher Signale oder zeitvarianter Nachrichtenkan�ale von Bedeutung.

Der Schwerpunkt der Untersuchungen liegt auf zeit{frequenz{parametrisierten Darstellungen, also

zeitvarianter Leistungsdichtespektren und zeitvarianter

�

Ubertragungsfunktionen. Die Einf�uhrung der

verallgemeinerten Weyl{Korrespondenz erm�oglicht eine einheitliche Formulierung bislang nur undurch-

sichtig zusammenh�angender Konzepte wie dem evolution�aren Spektrum nach Priestley, dem Wigner{

Ville{Spektrum, der von Zadeh eingef�uhrten zeitvarianten

�

Ubertragungsfunktion (Kohn{Nirenberg{

Symbol) und dem Weyl{Symbol. Das nichtstation�are Wiener{Filter dient als illustratives Beispiel

f�ur die begrenzte Anwendbarkeit solcher Darstellungen. Basierend auf der Spreadingfunktion des

die nichtstation�are Umgebung charakterisierenden Operators wird eine fundamentale Klassi�kation in

Underspread/Overspread{Umgebungen eingef�uhrt. F�ur Underspread{Umgebungen werden eine Reihe

von Eigenschaften bewiesen, die die Anwendbarkeit von Zeit{Frequenz{Konzepten analog zu den Fre-

quenzbereichsdarstellungen station�arer Umgebungen verdeutlichen. Die Kombination von e�zien-

ten, zeit{frequenz{parametrisierten Darstellungen mit der theoretischen Optimalit�at diagonalisieren-

der Transformationen f�uhrt zu Fensteroptimierungskriterien f�ur die Kurzzeit{Fouriertransformation/-

Gabor{Entwicklung (kontinuierliche/diskrete Weyl{Heisenberg{Entwicklung) von Signalen und line-

aren Systemen.
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Chapter 1

Introduction

This introduction motivates the present work followed by an overview of the original results and the

basic structure of the text.

1.1 Motivation

Theoretically optimal signal processing procedures are almost always (implicitly or explicitly) based

on the solution of an eigenproblem, i.e., the determination of eigenfunctions and eigenvalues of a linear

system. Related to the context of this work we point out the role of eigenexpansions in three speci�c

areas of communication engineering:

� In the theory of linear time{invariant systems the Fourier transform and the Laplace transform

are standard tools [266, 267, 224]. The \basis"{functions of these integral transforms are gener-

alized eigenfunctions of a linear time{invariant system and the transfer function plays the role

of a continuous eigenvalue distribution

1

.

� The Karhunen{Loeve (KL) transform

2

is based on the eigenexpansion of a covariance matrix

(or covariance kernel in a continuous setting) [194, 225, 4]. The solution of many important

statistical signal processing problems such as the design of optimum source coding schemes

requires knowledge of the KL basis signals [355, 326].

� For the digital communication over linear channels it is highly desirable to employ eigensignals

as transmission pulses since this means vanishing orthogonal distortion and in turn straight-

forward implementation of optimum detectors. The Nyquist criterion for the design of digital

transmission pulses [227] or the theory of prolate spheroidal wave functions [331] are classical

examples where eigen{theory is fundamental for the design of transmission pulses.

However, in the context of linear time{varying systems or nonstationary random processes (together

nonstationary environments) exact eigenexpansions are often not applicable due to the following rea-

sons:

1

With this terminology we follow the usual mathematical physicists viewpoint [125, 5]. Mathematically precise (part

of the spectral theory of linear operators) the LTI system's transfer function for some speci�c f

0

, H(f

0

) is no eigenvalue of

the underlying translation invariant operator acting on the Hilbert space L

2

(R), rather it is an element of the continuous

spectrum. However, H(f

0

) is an approximate eigenvalue in the sense of the approximate point spectrum and it gets to

a precise eigenvalue whenever H(f) = const in a neighborhood of f

0

[311, p.115]. Alternatively, by virtue of Gelfand

theory it is correct to speak about generalized eigenvalues whose corresponding eigen{\functions" are distributions, thus

generalized functions.

2

In a discrete context the KL transform is sometimes called Hotelling transform. Note, furthermore that the concept

of principal components and factor analysis boil down to the same idea of covariance diagonalization.

1
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� An exact eigenbasis typically does not possess the mathematical structure that admits e�cient

implementation or it does not establish an admissible set of transmission pulses for digital

communication.

� In case of incomplete a priori knowledge about a nonstationary environment (as for example in

mobile radio communication or practical Wiener �ltering for signal enhancement) an approxi-

mate diagonalization is the best one can hope to achieve.

1.2 Why Weyl{Heisenberg?

Structured signal sets are fundamental in many signal processing applications. The basic concept is

to generate the whole set out of one prototype signal (wavelet, window, pulse, atom, logon etc.) by

applying groups of unitary operators (e.g. time shift, frequency shift, scaling). The group structure is

fundamental for the fast discrete implementation of such transforms. The most prominent structures

are the a�ne group leading to the Wavelet transform and the Weyl{Heisenberg group leading to the

short{time Fourier transform and Gabor expansion [68]. As the title says, this thesis exclusively deals

with the Weyl{Heisenberg group. This fact requires some words of justi�cation particularly because

the current mainstream of \time{varying signal processing" research puts the focus on the extremely

popular Wavelet transform. We make the following points in favour of the Weyl{Heisenberg group:

� Time and frequency shifted versions of prototype signals are used in numerous existing appli-

cations such as digital communication, source coding, speech recognition, signal analysis and

signal enhancement. Hence, one can try to improve performance without total redesign by an

appropriate choice of the prototype signal and the time{frequency sampling grid.

� Practically important nonstationary environments such as the mobile radio channel are charac-

terized by two energy{preserving e�ects: the narrowband Doppler shift and time delay, which

are just the basic ingredients of the Weyl{Heisenberg group (the wideband Doppler e�ect leads

to the a�ne group).

� For slowly time{varying linear systems a time{varying transfer function should make sense|it

is time{frequency parametrized. The analog reasoning holds for slowly nonstationary random

processes where one expects that the (time{frequency{parametrized) time{varying power spec-

trum achieves essentially the same properties as the power spectrum of wide{sense stationary

random processes.

1.3 Addressed Problems

Time{frequency{parametrized representations of signals and systems have a comparatively long tra-

dition. Most of the important concepts where introduced in two decades following the second world

war, thus before the advent of powerful digital signal processing hardware. However, while short{

time Fourier analysis became a standard signal analysis tool, the other prominent and mathematically

even more sophisticated time{frequency concepts such as Zadeh's time{varying transfer function or

Priestley's evolutionary spectrum hardly ever explicitly entered real{world signal processing solutions.

This fact may be explained by a lack of mathematical justi�cation in the sense of the following open

problems:

� Given the usual (Zadeh's) de�nition of a time{varying transfer function, in how far does this

function re
ect algebraic properties of the LTV system's eigenvalues? In particular, does the

minimum/maximum of the transfer function reliably re
ect the maximum/minimum eigenvalue

of the system? When does the cascade of two systems correspond to a multiplication of their

transfer functions?
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� Given the notion of a time{varying power spectrum, is there any connection to the process'

KL eigenvalues? (For wide{sense stationary random processes the power spectrum establishes

indeed the continuous eigenvalue distribution of the convolution{type covariance kernel.)

� The linear time{invariant �ltering of stationary random processes is best characterized by a

frequency domain multiplication of the process' power spectrum and the magnitude squared

transfer function of the �lter. Can one set up appropriate conditions on a linear time{varying

�lter and a nonstationary random process such that the well{known frequency domain multipli-

cation relation carries over to an (approximate) time{frequency domain multiplication?

� What about the various classical de�nitions of a time{varying power spectrum related to the

previous question, is anyone marked out by better theoretical behavior?

� For slowly time{varying systems it is an intuitive assumption that windowed sinusoids are ap-

proximate eigenfunctions of the system. Can this thought be formulated in a mathematically

precise way? If yes, what is the optimum window given a (typically incomplete) a priori knowl-

edge about the system?

Illustrative Example: Nonstationary Wiener Filter. Consider a linear time{invariant system

with transfer function H(f). If the input signal is stationary white noise (with normalized variance)

then the output process y(t) is wide{sense stationary with power spectrum jH(f)j

2

. Assume, further-

more, that the output process is subject to additive white noise with spectral density �

2

n

. Then it is

well{known that the minimum{mean squared error estimator of a realization of y(t) given its noisy

version is also an LTI system whose transfer function is given by [355]:

E(f) =

jH(f)j

2

jH(f)j

2

+ �

2

n

;

this concept is known as Wiener �lter.

Now, when we switch to a nonstationary environment, and the time{varying transfer function were

a consistent generalization of its time{invariant counterpart then the time{varying transfer function

of the nonstationary Wiener �lter would be given by

E(t; f)

?

=

jH(t; f)j

2

jH(t; f)j

2

+ �

2

n

: (1.1)

The key questions associated with this concept are in the focus of the present work: (i) How can

one characterize nonstationary environments where (1.1) works in good approximation? (ii) Can one

realize the �lter via e�cient signal transforms?

1.4 Outline of this Thesis

In what follows we give an overview of the contents of the various chapters:

� The �rst chapter is devoted to the representation of nonstationary random processes via time{

frequency{parametrized second order statistics. We give a brief review of the optimal represen-

tation of stationary and nonstationary processes via the Fourier transform and the Karhunen{

Loeve transform. Particular emphasis is put on the fact that these transforms provide an eigen-

expansion of the correlation operators.

Then follows a critical review of the most prominent de�nitions of a time{varying power spec-

trum: The physical spectrum (expected spectrogram), the generalized Wigner{Ville spectrum

and Priestley's evolutionary spectrum. We discuss the connection of the Wigner{Ville spectrum

and the generalized Weyl correspondence. The Wiener �lter provides an excellent example for

pointing out the limited applicability of the time{frequency concepts.



4 INTRODUCTION

We study the expected ambiguity function as an original concept for the correlative representa-

tion of nonstationary random processes. We introduce a fundamental classi�cation of random

processes (underspread/overspread). For underspread processes we show that the generalized

Wigner{Ville spectrum and the evolutionary spectrum lead to an essentially identical result.

� In the second chapter we derive criteria for matching an STFT/Gabor window to the second

order statistic of a nonstationary random process. The basic idea is to try to combine time{

frequency{parametrization and correlation operator diagonalization by setting up o�{diagonal

norms as the cost function for the window optimization. The matching criteria are formulated

in terms of the window's ambiguity function and expected ambiguity function (EAF) of the

process.

For rectangular and elliptical shape of the EAF support we derive an approximate, low cost

matching rule that characterizes the optimum ratio of the temporal and the spectral moment of

a window with arbitrary shape. For elliptical shape of the EAF support, the Gaussian window

is shown to be optimal for the STFT. We furthermore prove that the physical spectrum with

matched analysis window establishes a complete second order statistic of an underspread process.

We brie
y point out the natural extension to multiwindow methods for the representation of

underspread processes.

� The third chapter is devoted to linear system theory. The concept of a time{varying transfer

function and a time{varying power spectrum are shown to be mathematically equivalent in so

far as in both concepts one maps a linear operator onto the time{frequency plane. In this sense,

the spreading function of an LTV system corresponds to the expected ambiguity function of a

nonstationary random process and the generalized Weyl symbol to the generalized Wigner{Ville

spectrum. We give a critical review of these system representations and we introduce a slightly

modi�ed version of the classical underspread/overspread classi�cation of LTV systems.

We study STFT{based system analysis and design. The window matching theory of the previous

chapter carries over to system theory. Speci�cally, we show that underspread systems can be

analyzed and realized via the short{time Fourier transform.

Finally, we study the practically important WSSUS class of stochastic time{varying systems

and derive criteria for optimum distortion free transmission pulses both considering single pulse

transmission and intersymbol interference in a time{frequency{division multiple access setup.

The mathematical structure is shown to be equivalent with the STFT/Gabor window matching

to a nonstationary process.

� The Chapter 4 is written in a more mathematical style. It is shown that underspread operators

form an approximate commutative operator algebra and the generalized Weyl correspondence

establishes an approximate homomorphism (i.e., the generalized Weyl symbol of the product

operator is approximately equal to product of the symbols). For each of the presented theorems

we point out its relevance in signal processing applications.

� Finally, in Chapter 5 the main results of this thesis are summarized and various future research

problems are pointed out.

� Appendix A gives a very brief review of the basic facts of linear operator theory matched to the

scope of this thesis. In Appendices B and C we summarize the de�nition and property of the

generalized spreading function and the generalized Weyl symbol. In the Appendices D and E we

derive the minimum{variance unbiased estimator for the generalized Wigner{Ville spectrum of

an underspread process and the generalized Weyl symbol of an underspread system. Appendix F

summarizes the mathematical properties of various time{frequency signal representations used

in this work.



Chapter 2

Time{Frequency Representation and

Classi�cation of Random Processes

This chapter starts with a brief review of the theoretically optimal representation of stationary and

nonstationary random processes via the Fourier transform and the Karhunen{Loeve transform, re-

spectively. Particular emphasis is put on the fundamental \diagonalizing" property of these trans-

forms. We discuss classical de�nitions of a time{varying power spectrum, Priestley's evolutionary

spectrum and the generalized Wigner{Ville spectrum, and we point out their limited applicability. We

study the properties and relations of the expected ambiguity function (EAF). Based on the support of

the EAF, we introduce a fundamental classi�cation (underspread/overspread) of nonstationary ran-

dom processes. For underspread processes it is shown that i) any of the considered de�nitions of

a time{varying spectrum leads to a two{dimensional lowpass function with the bandlimits given by

the maximum temporal/spectral correlation width, and ii) Priestley's evolutionary spectrum and the

generalized Wigner{Ville spectrum are essentially equivalent.

2.1 Stationary Environments and the Fourier Transform

The Fourier transform plays a fundamental role in the theory of signals and linear systems. This is

mainly due to the fact that it gives a diagonalization of translation{invariant operators. Such operators

appear either as a linear time{invariant (LTI) system or they correspond to the correlation kernel of

a wide{sense stationary process. In the �rst case the Fourier transform describes the action of an LTI

system H with kernel (impulse response) h(�) as frequency domain multiplication

(Hx) (t) =

Z

�

h(t� �)x(�)d�

m

(FHx) (f) = H(f) (Fx) (f); (2.1)

where H(f) = (Fh) (f) is the transfer function (frequency response) of the LTI system and F de-

notes the Fourier transform. More generally, the Fourier transform helps to treat abstract operator

calculus such as inversion or composition of LTI systems as simple, pointwise scalar operations of the

corresponding transfer functions.

In the case of a wide{sense stationary process x(t), with correlation kernel r(�) = Efx(t)x

�

(t��)g,

the Fourier transform leads to uncorrelated increments [268, 287, 85]:

E fd (Fx) (f)d (Fx)

�

(�)g = S

x

(f)�(f � �)df d�; (2.2)

where S

x

(f) denotes the power spectrum as de�ned by the Wiener{Khintchine relation:

S

x

(f) = (Fr) (f): (2.3)

5
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This property forms the basic motivation of spectral analysis as a means for extracting the relevant

information from a realization of a stationary process. In the statistical context the usual terminology

says that the Fourier \basis" e

j2�ft

is doubly orthogonal, i.e., orthogonal in the deterministic sense of

Z

t

e

j2�ft

e

�j2��t

dt = �(f � �);

and orthogonal in the stochastic sense according to (2.2).

The conceptual signi�cance of operator diagonalization is well illustrated by the example of mini-

mum mean{squared error �ltering.

2.1.1 Illustrative Example: Wiener Filter

Consider the classical setup for statistically optimal linear �lters: Given is a noisy observation y(t) of

a signal process x(t):

y(t) = x(t) + n(t);

where n(t) is a statistically independent noise process. The minimum mean{squared error �lter (linear

estimator) is de�ned as [267, 326, 355, 199]

H

MMSE

def

= arg min

H

E

n

kx�Hyk

2

o

:

Unique solution of this problem requires at least knowledge of the correlation operators of the signal

process and the noise, R

x

and R

n

, respectively

1

. Then, the formal solution to this optimization

problem can be derived by the statistical orthogonality principle [267, 326, 355]. It requires addition,

multiplication and inversion of linear operators:

H

MMSE

= R

x

(R

x

+R

n

)

�1

: (2.4)

If both the signal and the noise are (wide{sense) stationary one is in the lucky situation that R

x

and

R

n

and in turn H

MMSE

have a common set of generalized eigensignals and the operator calculus of

(2.4) carries over to a scalar multiplication in terms of the eigenvalue distributions:

H

MMSE

(f) =

S

x

(f)

S

x

(f) + S

n

(f)

; (2.5)

where H

MMSE

(f) is the transfer function of the optimum �lter (in the stationary case it is indeed an

LTI system), S

x

(f) is the power spectrum of the signal, and S

n

(f) is the power spectrum of the noise.

The linear operator formulation (2.4) remains valid for nonstationary processes with �nite expected

energy, but then H

MMSE

corresponds to a linear time{varying system. In the following section we

shall investigate this issue in more detail.

2.2 Nonstationary Environments and the KL Transform

In many applications the assumption of stationarity is well justi�ed and the Fourier transform is at least

implicitly used for the signal and system analysis. However, in some of the classical applications and

particularly in current research areas such as mobile communication or waveform coding a stationarity

assumption can not be maintained without signi�cant performance penalty.

1

We de�ne the correlation operator R

x

of a random process x(t) as the integral operator whose kernel is the correlation

function r

x

(t; s) = Efx(t)x

�

(s)g, i.e., one has

(R

x

y) (t) =

Z

s

r

x

(t; s)y(s)ds:
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Nonstationary environments are characterized by time{varying operators with a general two{

dimensional kernel h(t; s). Background information about linear operators is summarized in Appendix

A, for the following discussion we presuppose familiarity with basic linear operator terminology.

For a square integrable kernel the associated operator is of Hilbert{Schmidt type. If we furthermore

assume a normal operator

2

, i. e., H

�

H = HH

�3

, then the following spectral decomposition holds (i.e.,

the sum always converges at least in the weak sense of quadratic forms, for more details see Appendix

A),

h(t; s) =

1

X

k=1

�

k

u

k

(t)u

�

k

(s)

m (2.6)

H =

1

X

k=1

�

k

P

u

k

;

where �

k

is the (complex{valued) eigenvalue distribution and fu

k

(t)g

k=1;2;:::1

is the orthonormal basis

of eigenfunctions,

hu

k

; u

l

i

def

=

Z

t

u

k

(t)u

�

l

(t)dt = �

kl

; (2.7)

and P

u

k

denotes the rank{one projection operator onto u

k

(t):

(P

u

k

x) (t)

def

= hx; u

k

i u

k

(t): (2.8)

The eigenvalues can be formally written as a HS operator inner product:

�

k

= hH;P

u

k

i

def

=

Z

t

Z

s

h(t; s)u

�

k

(t)u

k

(s)dt ds: (2.9)

For the sake of a compact notation we introduce the unitary operator U that maps an x 2 L

2

(R)

onto a coe�cient vector hx; u

k

i 2 l

2

(Z) such that

x(t) =

1

X

k=1

(Ux) (k)u

k

(t); with (Ux) (k)

def

= hx; u

k

i:

The discrete analogue to (2.1) is given by

(Hx) (t) =

Z

s

h(t; s)x(s)ds

m

(UHx) (k) = �

k

(Ux) (k):

Replacing the impulse response h(t; s) by a still square{integrable but now self{adjoint

4

correlation

kernel r

x

(t; s) of a nonstationary, zero{mean random process we obtain the nonstationary analogue to

(2.2) [167]

E f(Ux) (k) (Ux)

�

(l)g = �

k

�

kl

: (2.10)

2

Practically important LTV systems such as, e.g., the mobile radio channel are usually not normal in the precise

mathematical sense. In Chapter 5 we shall however prove a theorem that determines the approximate normality of

underspread LTV systems, i.e., systems with appropriately limited memory and limited velocity of the time{variation.

We de�ne approximate normality in a HS sense meaning that there exists a normal LTV operator which deviates from

the given operator with small HS norm.

3

H

�

denotes the adjoint operator de�ned by (H

�

)(t; s) = (H)

�

(s; t).

4

A self{adjoint operator is de�ned by H = H

�

, it is normal with real{valued eigenvalues.
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Here, the unitary map U is well{known as Karhunen{Loeve transform [194, 225]. As a map of a

nonstationary process onto uncorrelated coe�cients the Karhunen{Loeve transform is of fundamental

importance in statistical signal processing, speci�cally in the design of e�cient source coding schemes

[4, 326, 183]. It is the consistent generalization of the Fourier transform as it is based on doubly

orthogonal basis signals (orthogonality in the deterministic sense of (2.7) and the stochastic sense

(2.10)).

2.2.1 Formal Derivations of the KL Transform

The Karhunen{Loeve transform is matched to a normal Hilbert{Schmidt (HS) operator since it is

based on the speci�c eigenbasis of the operator. This matching aspect can be formalized by setting

up optimization criteria which lead to the KL transform as their optimum.

In this section we denote the KL transform by U

opt

to stress its optimality while U denotes a

general unitary transform (mapping from L

2

(R) onto l

2

(Z)). We furthermore introduce a matrix

representation of the normal HS operator in the following form

H

U

(k; k

0

)

def

= hHu

k

0

; u

k

i :

Minimization of an O�{Diagonal Norm. As a diagonalizing transform one can formally derive

the Karhunen{Loeve transform by the minimization of an o�{diagonal norm M

U

which is de�ned as:

M

U

def

=

1

X

k=1

1

X

k

0

=1

�

�

H

U

(k; k

0

)

�

�

2

(1� �

kk

0

): (2.11)

It is straightforward to show that:

M

U

= kHk

2

�

1

X

k=1

jH

U

(k; k)j

2

;

where the operator norm is the Hilbert{Schmidt norm (see p. 129). The optimization problem thus

amounts to maximizing the norm of the diagonal:

U

opt

= arg min

U

M

U

= arg max

U

1

X

k=1

jH

U

(k; k)j

2

; (2.12)

subject to the constraint that U be an orthogonal transform from L

2

(R) onto l

2

(Z).

Optimal Concentration of Coe�cient Power Distribution. We mention the formal derivation

(2.11)|(2.12) for two reasons: i) it motivates the choice of the cost function in the subsequently

discussed window optimization theory, and ii) it shows that optimum diagonalization of a correlation

operator H = R

x

is equivalent with optimum power concentration in the distribution of the expansion

coe�cients. Since one has an invariance of the sum of the diagonal entries (H

U

(k; k) is real{valued

and positive since R

x

is positive self{adjoint per de�nition.):

1

X

k=1

H

U

(k; k) = trH; for any choice of U ; (2.13)

we could equally well derive the Karhunen{Loeve transform by merely optimizing a concentration

measure of the diagonal entries:

U

opt

= arg max

U

1

X

k=1

n

H

2

U

(k; k)�H

U

(k; k)

o

; (2.14)
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where we assume H

U

(k; k) < 1, which assures H

U

(k; k) > H

2

U

(k; k) (H

U

(k; k) < 1 is satis�ed for the

usual assumption of a process with normalized expected energy trR

x

= 1). For H = R

x

the diagonal

entries of H

U

(k; k

0

) are the variance of the kth coe�cient in the process representation,

hR

x

u

k

; u

k

i = E

n

jhx; u

k

ij

2

o

= hR

x

;P

u

k

i :

In the representation of a nonstationary process the KL transform thus provides both uncorrelated

coe�cients, i.e., optimum linear representation via x(t) 7! (U

opt

x)(k) and optimally concentrated

power distribution of the coe�cients, i.e., optimum quadratic representation in the sense of x(t) 7!

j(U

opt

x)(k)j

2

.

2.2.2 Nonstationary Wiener Filter

Under the assumption of nonstationary signal and noise processes with identical Karhunen{Loeve

eigenbasis

5

one can formulate a KL based Wiener �lter analog to (2.5):

�

(MMSE)

k

=

�

(x)

k

�

(x)

k

+ �

(n)

k

=

hR

x

;P

u

k

i

hR

x

;P

u

k

i+ hR

n

;P

u

k

i

: (2.15)

The nonstationary Wiener �lter is thus a linear time{varying system with impulse response

h

MMSE

(t; s) =

1

X

k=1

�

(MMSE)

k

u

k

(t)u

�

k

(s);

and input{output relation as follows:

(H

MMSE

y)(t) =

Z

s

h

MMSE

(t; s)y(s)ds =

1

X

k=1

�

(MMSE)

k

hy; u

k

iu

k

(t):

2.2.3 Practical Limitations of the KL Transform

From a strictly mathematical point of view, the Karhunen{Loeve transform (and its system theoretic

pendant) is the ultimate tool for nonstationary environments. However, in practical engineering exact

eigenexpansions are of restricted applicability due to the following reasons:

� Most often the starting point is an incomplete a priori knowledge of an underlying kernel. Instead

of solving a usual eigenproblem one has to encounter the conceptually di�cult task of matching a

signal transform to the a priori knowledge at hand. Prominent examples for such an incomplete

a priori knowledge include the scattering function of a stochastic time{varying channel or a

quasistationarity condition for a random waveform.

� Even if one assumes exact knowledge of a correlation kernel or of a system's impulse response,

the eigensignals in general are not equipped with a speci�c mathematical structure that leads

to fast implementations. In practice, one thus uses more or less coarse approximations to the

Karhunen{Loeve transform that allow e�cient computation.

� When important \natural" signals like speech or music are analyzed by a human observer, ease

of interpretation is more important than mathematical optimality. An intuitive interpretation of

the transform domain parametrization is given by the notion of a time{varying signal spectrum.

Using the general Karhunen{Loeve transform we have no justi�cation to apply any physical

interpretation to the transform domain index k.

5

Although this is a severe constraint it is satis�ed in the practically important case of stationary white noise. (The

correlation operator of stationary white noise is the identity operator which trivially assures the required assumption of

identical KL eigenbases of the signal and noise processes.)
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2.3 Time{Varying Power Spectra

Notwithstanding the practical limitations of the KL transform we emphasize that the KL transform

as a diagonalizing transform of time{variant operators is in unique correspondence to the Fourier

transform as the diagonalizing transform of time{invariant operators. This abstract correspondence

gets physical life by \slowing down" the time{variations of an operator; one can show that the KL

basis signals then converge to the Fourier \basis" e

�j2�ft

[287, 353]. Hence it is a classical idea to

extend the powerful concept of the Fourier transform from strictly stationary environments to \slowly"

nonstationary environments. Since this is no precise mathematical problem, researchers in statistics

and signal processing suggested various di�erent de�nitions of a time{varying power spectrum. In the

following sections we give a brief review of the most important de�nitions.

2.3.1 The Physical Spectrum

The short{time Fourier transform (STFT)

STFT

(
)

x

(t; f)

def

=

Z

s

x(s)


�

(s� t)e

�j2�fs

ds;

is a linear time{frequency representation of a signal x(t). The STFT depends on the analysis window


(t). (The properties of the STFT are discussed in Appendix F.)

Perhaps the most natural way to de�ne a time{varying power spectrum is via the expectation of

the spectrogram, the magnitude{squared STFT:

ESPEC

(
)

x

(t; f) = E

�

�

�

�

STFT

(
)

x

(t; f)

�

�

�

2

�

: (2.16)

The so{de�ned spectrum has been originally introduced as physical spectrum [230]. The most obvious

disadvantage of this de�nition is its window dependence, i.e., di�erent windows may lead to quite

di�erent spectra.

Stationary Process and Nonstationary White Noise. For a stationary process with time{

invariant power spectrum S

x

(f) the physical spectrum can be shown to be time{invariant and its

frequency characteristic is given by a smoothed version of the true power spectrum:

ESPEC

(
)

x

(t; f) = S

x

(f) � j�(�f)j

2

; (2.17)

in the dual case of nonstationary white noise with correlation r

x

(t; s) = m

x

(t)�(t� s), we have a dual

result:

ESPEC

(
)

x

(t; f) = m

x

(t) � j
(�t)j

2

: (2.18)

Operator Theoretic Formulation. For later use we introduce a more abstract, formal de�nition

of the physical spectrum as a HS operator inner product

ESPEC

(
)

x

(t; f) = E

n

STFT

(
)

x

(t; f)STFT

(
)�

x

(t; f)

o

= E

8

<

:

Z

t

1

Z

t

2

x(t

1

)x

�

(t

2

)
(t

2

� t)


�

(t

1

� t)e

�j2�(t

1

�t

2

)f

dt

1

dt

2

9

=

;

=

Z

t

1

Z

t

2

r

x

(t

1

; t

2

)
(t

2

� t)


�

(t

1

� t)e

�j2�(t

1

�t

2

)f

dt

1

dt

2

=

D

R

x

;P

(t;f)




E

; (2.19)
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where R

x

is the above introduced correlation operator, P




is the rank{one projection onto 
, and

time{frequency shifting of operators is de�ned as:

P

(t;f)

def

= M

f

T

t

PT

�t

M

�f

= M

f

T

t

P (M

f

T

t

)

�1

(2.20)

m

�

P

(t;f)

�

(t

1

; t

2

) = (P) (t

1

� t; t

2

� t)e

j2�(t

1

�t

2

)f

: (2.21)

Here, M

f

is the frequency{shift (modulation) operator de�ned by

(M

f

x)(t)

def

= x(t)e

j2�ft

;

and T

t

denotes the time{shift operator de�ned by

(T

t

x)(s)

def

= x(s� t):

Observe the formal equivalence of (2.19) with the previously introduced expression for KL eigen-

values:

�

k

= hR

x

;P

u

k

i :

We shall make use of this abstract correspondence later on for the statistically matched window design.

De�nition (2.20) will often be used in this work and we urge the reader to become familiar with

its meaning: When P is a time{frequency{localization operator which selects signals centered about

the origin of the time{frequency plane, then P

(t;f)

is unitarily equivalent and selects signals centered

about (t; f)

6

.

Relation to KL Transform. It is helpful to view the expected spectrogram as a distribution of the

KL eigenvalues over the time{frequency plane. This is supported in a global way by the fact that

Z

t

Z

f

ESPEC

(
)

x

(t; f)dt df =

1

X

k=1

�

k

= trR

x

: (2.22)

Proof: Our proof is based on the fundamental fact that the integral over time{frequency shifted

operators gives the identity times the trace of the shifted operator:

Z

t

Z

f

P

(t;f)

dt df = tr fPg I: (2.23)

This formula is immediately obtained by integrating over the kernel of P

(t;f)

(cf.(2.21)) or via the

trace formula of the Weyl correspondence (cf. (C.14)) Now, the proof of (2.22) is straightforward:

Z

t

Z

f

ESPEC

(
)

x

(t; f)dt df =

Z

t

Z

f

D

R

x

;P

(t;f)




E

dt df

=

*

R

x

;

Z

t

Z

f

P

(t;f)




dt df

+

= hR

x

; tr fP




g Ii

=

Z

t

1

Z

t

2

r

x

(t

1

; t

2

)�(t

1

� t

2

)dt

1

dt

2

= trR

x

:

6

A more conventional, special case of (2.20) is the frequency shifting of a lowpass �lter H with transfer function H(f).

The transfer function of the frequency{shifted version H

(0;�)

is given by

H

(0;�)

(f) = H(f � �);

i.e., the shifted lowpass �lter gets to a bandpass �lter with center frequency �.
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We still have to check whether the KL eigenvalues are distributed in a locally meaningful way. One

has:

ESPEC

(
)

x

(t; f) =

1

X

k=1

�

k

SPEC

(
)

u

k

(t; f): (2.24)

This would be useful only for essentially non{overlapping spectrograms SPEC

(
)

u

k

(t; f), such that each

KL eigenvalue would correspond to a di�erent \Weyl{Heisenberg cell"

7

. But orthonormal signals

may have totally overlapping spectrograms such that di�erent eigenvalues would be superposed over

the very same time{frequency{localization which ruins the idea of a meaningful time{varying power

spectrum. At this point we do not further elaborate this issue (this is the topic of the following

chapter) rather we continue with our review of prominent time{varying power spectra.

2.3.2 The Generalized Wigner{Ville Spectrum

The theoretically unsatisfactory window{dependence of the spectrogram has led researchers to de�ne

time{varying power spectra directly in the quadratic domain without any underlying linear process

representation.

The temporal correlation in its \kernel" form

r

x

(t; s) = Efx(t)x

�

(s)g

does not appropriately re
ect the absolute time{variations of a process' second order statistics (the

degree of nonstationarity). Hence, it is often useful to switch to an absolute time/time lag (t; �) form.

However, such a map is not unique, a general form is given by

r̂

(�)

x

(t; �)

def

= r

x

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

;

where � is a real{valued parameter. The natural members of this family are the symmetrical version

r̂

(0)

x

(t; �) = r

x

(t + �=2; t� �=2); (2.25)

and the asymmetrical versions

r̂

(1=2)

x

(t; �) = r

x

(t; t� �); (2.26)

r̂

(�1=2)

x

(t; �) = r

x

(t + �; t): (2.27)

For a stationary process, r̂

(�)

x

(t; �) gets �{invariant and depends only on the lag variable:

r̂

(�)

x

(t; �) = �r

x

(�): (2.28)

Now, one can write the Wiener{Khintchine relation for stationary processes formally as

S

x

(f) = F

�!f

r̂

(�)

x

(t; �) for r

x

(t; s) = �r

x

(t� s)

such that it is near at hand to de�ne a time{varying power spectrum by

EW

(�)

x

(t; f) = F

�!f

r̂

(�)

x

(t; �);

which is known as generalized Wigner{Ville spectrum [121]. For � = 0 we have speci�cally the

Wigner{Ville spectrum (expected Wigner distribution) and for � = 1=2 we have the Rihaczek spectrum

(expected Rihaczek distribution).

7

For the simplicity of the discussion we do not admit identical eigenvalues since they lead to nonunique eigensignals.
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The consistency with the usual power spectrum of stationary processes follows immediately from

(2.28):

EW

(�)

x

(t; f) = S

x

(f)

m

r

x

(t; s) = �r

x

(t� s):

In the dual case of nonstationary white noise the generalized Wigner{Ville spectrum is again

�{invariant and leads to the natural result

EW

(�)

x

(t; f) = m

x

(t)

m

r

x

(t; s) = m

x

(t)�(t � s):

Operator Formulation. Similar to the physical spectrum (see (2.19)) we can de�ne the generalized

Wigner{Ville spectrum EW

(�)

x

(t; f) by a formal operator inner product

8

EW

(�)

x

(t; f) =

D

R

x

;P

(t;f)

(�)

E

; (2.29)

where the prototype operator is de�ned by

�

P

(t

0

;f

0

)

(�)

�

(t; s)

def

= �

��

1

2

+ �

�

t +

�

1

2

� �

�

s� t

0

�

e

j2�f

0

(t�s)

: (2.30)

This operator is indeed the in�nitesimal building block underlying a time{frequency{parametrized

expansion of the correlation operator,

R

x

=

Z

t

Z

f

EW

(�)

x

(t; f)P

(t;f)

(�) dt df;

we call such an operator decomposition a continuous Weyl{Heisenberg expansion of R

x

.

The prototype operator P

(t;f)

(�) is trace{normalized:

trP(�) = 1;

which, by virtue of (2.23), shows that the KL eigenvalues are distributed over the time{frequency

plane in a globally correct way (a well{known fact [121]):

Z

t

Z

f

EW

(�)

x

(t; f)dt df =

1

X

k=1

�

k

= trR

x

: (2.31)

However, a point{wise interpretation is in obvious con
ict with Heisenberg's uncertainty principle,

which in a statistical formulation says that there can not exist ideally time{frequency concentrated

processes

9

.

Yet, it is interesting to study the in�nitesimal prototypes for the most prominent choices of �:

8

In contrast to the inner product formulation of the physical spectrum, this inner product is no well{de�ned HS

operator inner product, since P is de�nitely not HS. A mathematically rigorous development would require the use of

linear functionals and the associated concept of dual topological vector spaces. However, such a rigorous treatment is

beyond the scope of this work, and it blurs the interrelation between various classical de�nitions of a power spectrum.

9

An optimally time{frequency concentrated process is obviously given by a Gaussian signal 
(t) with random am-

plitude. For normalized variance the correlation operator of this ideally localized process is just the above introduced

rank{one projection operator P




. This point of view leads back to the physical spectrum. However, the physical spec-

trum is a nonunitary representation of the correlation operator which means in particular that we do not have validity

of a continuous Weyl{Heisenberg expansion in the form of:

R

x

!

6=

Z

t

Z

f

ESPEC

(
)

x

(t; f)P

(t;f)




dt df:
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� For � = 1=2, P

(t

0

;f

0

)

is ideally frequency selective and the output is ideally temporally localized:

�

P

(t

0

;f

0

)

x

�

(t) = �(t� t

0

)X(f

0

)e

j2�f

0

t

0

:

� For � = �1=2, we have the dual behavior: ideal frequency concentration on the range and ideal

temporal selectivity on the domain:

�

P

(t

0

;f

0

)

x

�

(t) = e

j2�f

0

t

x(t

0

)e

�j2�f

0

t

0

:

� For the speci�c case � = 0 the prototype operator acts in a totally symmetric way as a \time{

frequency point mirror":

�

P

(t

0

;f

0

)

x

�

(t) = 2x(2t

0

� t)e

j2�2f

0

(t�t

0

)

;

�

FP

(t

0

;f

0

)

x

�

(f) = 2X(2f

0

� f)e

j2�2t

0

(f

0

�f)

:

From this operator decomposition point of view it may be expected that the generalized Wigner{Ville

spectrum of a general nonstationary process does not lead to a practically useful representation.

Relation to the Weyl Symbol and the Wigner Distribution. The generalized Wigner{Ville

spectrum is the generalized Weyl symbol of the correlation operator

L

(�)

R

x

(t; f) = EW

(�)

x

(t; f);

the generalized Weyl symbol will be speci�cally studied in Chapter 4, it can be interpreted as a

time{varying transfer function of a linear time{varying system (the properties and relations of the

generalized Weyl correspondence are summarized in Appendix B,C).

The generalized Wigner{Ville spectrum is the expectation of the generalized Wigner distribution

(see (F.11))

EW

(�)

x

(t; f) = E

n

W

(�)

x

(t; f)

o

:

Based on the KL expansion of R

x

the generalized Wigner{Ville spectrum can be written as a KL

eigenvalue weighted sum of the generalized Wigner distribution of the KL eigensignals:

EW

(�)

x

(t; f) =

1

X

k=1

�

k

W

(�)

u

k

(t; f):

Hence, we argue that the process representation via EW

(�)

x

(t; f) is useful only in that cases where the

KL eigensignals (corresponding to di�erent eigenvalues) are non{overlapping in their essential support.

Then, the generalized Wigner{Ville spectrum does indeed give a reliable power distribution over the

time{frequency plane, one has:

�

k

= E

n

jhx; u

k

ij

2

o

=

D

EW

(�)

x

;W

(�)

u

k

E

: (2.32)

When the KL eigensignal u

k

(t) is localized at (t

0

; f

0

) then the range of the Wigner{Ville spectrum

about that very location re
ects the power of the process. In the converse case of KL eigensignals

with overlapping Wigner distributions (2.32) remains valid but EW

x

(t; f) will generically show an

oscillatory behavior, di�erent KL eigenvalues are superimposed over the same time{frequency location

and the range of EW

x

(t; f) does not allow to say anything about the power of the process about some

time{frequency localization. Later on in this work we shall see that this problem is related to the

underspread/overspread classi�cation of nonstationary processes.

Interrelation to Physical Spectrum. The physical spectrum is a smoothed version of the gener-

alized Wigner{Ville spectrum [230] (�� denotes 2D convolution),

ESPEC

(
)

x

(t; f) = EW

(�)

x

(t; f) � �W

(�)�




(�t;�f); (2.33)
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where the smoothing kernel is the generalized Wigner distribution of the window. This relation shows

in an obvious way how the choice of the window blurs the spectral and temporal characteristic of a

nonstationary process. In contrast to the physical spectrum which is based on a noninvertible map

from R

x

onto the time{frequency plane, the generalized Wigner{Ville spectrum is a unique second

order statistic of a nonstationary process (for the map EW

(�)

x

(t; f) 7! r

x

(t; s) see (C.2)).

2.3.3 The Evolutionary Spectrum

The evolutionary spectrum is a classical de�nition of a time{varying power spectrum introduced by

Priestley [286]. Priestley's de�nition relies on the idea of a doubly orthogonal process expansion.

Instead of a detailed review of the original motivation (the interested reader is referred to the work of

Priestley [286, 287] and to experimental and theoretical comparisons with the generalized Wigner{Ville

spectrum [149, 138, 121, 236, 237]) we motivate Priestley's de�nition via the time{varying transfer

function of the innovations system. This approach is particularly matched to the context of this work.

Any nonstationary process can be viewed as the output of a linear time{varying system, the so{

called innovations system H excited by stationary white noise [268]. The correlation operator of the

process is then given by:

R

x

= HH

�

; (2.34)

i.e., in terms of the kernels:

r

x

(t; s) =

Z

r

h(t; r)h

�

(s; r) dr;

where the input{output relation of the LTV system is de�ned by

(Hx) (t) =

Z

s

h(t; s)x(s)ds:

Eq.(2.34) shows that the innovations system is not uniquely de�ned since based on an arbitrary unitary

operator U (with UU

�

= I) one can take an alternative innovations �lter G = HU such that

GG

�

= HUU

�

H

�

= HH

�

:

For stationary processes the innovations representation can be easily formulated in the frequency

domain:

S

x

(f) = jH(f)j

2

; (2.35)

where S

x

(f) is the power spectrum of the process and H(f) is the transfer function of the time{

invariant innovations system

In order to de�ne a straightforward time{varying generalization of (2.35) we need a time{varying

generalization of the LTI system's transfer function H(f). When we consider Zadeh's time{varying

transfer function

Z

H

(t; f) =

Z

�

h(t; t� �)e

�j2�f�

d�

as the time{varying generalization of the time{invariant transfer function H(f), then we can axiomat-

ically de�ne the evolutionary spectrum as the time{varying generalization of (2.35)

ES

x

(t; f)

def

= jZ

H

(t; f)j

2

: (2.36)

For a stationary process the evolutionary spectrum is consistent with the usual power spectrum,

ES

x

(t; f) = S

x

(f)

m

r

x

(t; s) = �r

x

(t� s):
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For nonstationary white noise it leads to the theoretically expected result just as the Wigner{Ville

spectrum:

ES

x

(t; f) = m

x

(t)

m

r

x

(t; s) = m

x

(t)�(t � s):

However, for a general nonstationary process Priestley's spectrum is not unique since the innovations

system is not unique.

Operator Theoretic De�nition. Zadeh's time{varying transfer function is equivalent to the gener-

alized Weyl symbol with � = 1=2 (we shall discuss the concept of a time{varying transfer function of

an LTV system in more detail in Chapter 4). It is the theory of the generalized Weyl correspondence

which connects Priestley's de�nition with the generalized Wigner{Ville spectrum.

In order to give a compact operator formulation of the evolutionary spectrum we formally de�ne

a (non{unique) operator square{root by:

H

def

=

p

R

x

() R

x

= HH

�

:

With this notational convention we can write the evolutionary spectrum as a magnitude{squared

operator inner product:

ES

x

(t; f)

def

=

�

�

�

D

p

R

x

;P

(t;f)

(1=2)

E

�

�

�

2

; (2.37)

where P(1=2) denotes a prototype operator as de�ned in (2.30) with � = 1=2. From this point of

view, it is natural to de�ne a generalized evolutionary spectrum [237] in terms of the �{dependent

prototype operator which underlies the generalized Weyl symbol:

ES

(�)

x

(t; f)

def

=

�

�

�

L

p

R

x

(t; f)

�

�

�

2

=

�

�

�

D

p

R

x

;P

(t;f)

(�)

E

�

�

�

2

: (2.38)

Hence, compared to the Wigner{Ville spectrum

EW

(�)

x

(t; f) = L

R

x

(t; f) =

D

R

x

;P

(t;f)

(�)

E

;

the evolutionary spectrum is always real{valued and positive but it does not give a unique second{

order statistic of a general nonstationary process since the mapR

x

7! ES

x

(t; f) is not invertible. Note,

moreover, that if the generalized Weyl symbol would satisfy the so{called \perfect symbol calculus"

then the evolutionary spectrum and the Wigner{Ville spectrum would be equivalent:

L

(�)

HH

�

(t; f)

?

= L

(�)

H

(t; f)L

(�)

H

�

(t; f)

?

=

�

�

�

L

(�)

H

(t; f)

�

�

�

2

m (2.39)

ES

(�)

x

(t; f)

?

= EW

(�)

x

(t; f):

2.3.4 Applicability to Nonstationary Wiener Filtering

None of the previously discussed de�nitions of a time{varying power spectrum satis�es a useful local

property that would justify its application. As an illustration for this fact we again consider the

Wiener �lter: if a time{varying transfer function H(t; f) and a time{varying signal spectrum E(t; f)

were consistent generalizations of the corresponding time{invariant entities (the transfer function

of an LTI system and the power spectrum of a stationary process) then one would have a unique

representation of the nonstationary Wiener �lter (corresponding to (2.4)):

H

MMSE

(t; f)

?

=

E

x

(t; f)

E

x

(t; f) + E

n

(t; f)

: (2.40)
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Without even speci�cally considering the prominent examples for H(t; f) (Zadeh's function, Weyl sym-

bol) and E

x

(t; f) (Physical spectrum, Evolutionary spectrum, generalized Wigner{Ville spectrum) we

know that (2.40) can never work in general simply because there does not exist a unique diagonalizing

linear transform for a time{varying operator. Moreover we guess that it is even very hard to �nd one

speci�c (nondegenerate) example where (2.40) works exactly. As one of the main results of Chapter

5 we give precise conditions under which (2.40) works in an approximate sense, i.e., the validity of

an approximate symbol calculus. Note, moreover, that validity of an approximate symbol calculus

also implies the approximate equivalence of the Wigner{Ville spectrum and the evolutionary spectrum

(see (2.39)). Hence, without detailed theoretical investigations we can already expect that for those

processes where the notion of a time{varying power spectrum makes sense such a power spectrum

must be essentially de�nition independent.

2.4 The Expected Ambiguity Function

The (radar) ambiguity function of a signal x(t),

A

x

(�; �)

def

=

Z

t

x(t)x

�

(t� �)e

�j2��t

dt;

can be interpreted as deterministic time{frequency correlation function (see Appendix F, Section

F.0.4). A stochastic time{frequency correlation function of a nonstationary process can be de�ned as

the expected ambiguity function (EAF)[211]:

EA

x

(�; �)

def

= E fA

x

(�; �)g =

Z

t

r

x

(t; t� �)e

�j2��t

dt: (2.41)

The so de�ned EAF is mathematically equivalent to the asymmetrical spreading function (delay

Doppler spread function) of the correlation operator (see (B.8)):

S

R

x

(�; �) = EA

x

(�; �): (2.42)

The mathematical properties of the spreading function as a unitary operator representation are dis-

cussed in Appendix B, p. 134. The correspondence (2.42) gets physical life if we think of the process

x(t) as the output signal of an LTV systemH driven by stationary white noise. Then, sinceR

x

= H

�

H,

the spreading function of the composite system is the EAF of x(t).

The EAF EA

x

(�; �) is in one{to{one correspondence with the usual correlation function,

r

x

(t; s) =

Z

�

EA

x

(t� s; �)e

j2��t

d�; (2.43)

and gives an alternative viewpoint of the second order statistic of a process.

2.4.1 Heuristic Derivation Based on STFT Correlation.

Applying an expectation operator to the ambiguity function of a nonstationary process is certainly

not a very convincing way of introducing a useful concept. However, as it will turn out in the following

discussion it is not so easy to come up with a useful point{wise interpretation of the EAF. Yet we can

promise to develop formulas for later use in this work. We start with the question: How to de�ne a

time{frequency correlation function of a nonstationary process?

In order to �nd an answer, recall the well established concepts of a temporal and spectral correlation

function. The temporal correlation function is de�ned as

r

x

(t; s) = Efx(t)x

�

(s)g;
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which degenerates to a one{dimensional function in the case of wide{sense stationarity, r

x

(t; s) =

�r

x

(t� s). Whereas, the spectral correlation function is de�ned as

B

x

(f; �) = EfX(f)X

�

(�)g;

which degenerates to a one{dimensional function in the case of nonstationary white noise, which is

the \spectrally stationary" process, in Fourier dualism to the wide{sense stationarity in the usual

(temporal) sense.

In order to combine these concepts in the sense of a time{frequency correlation function we need

a linear time{frequency signal representation. The only linear time{frequency representation is the

short{time Fourier transform (STFT) (see Appendix F, Section F.0.1),

STFT

(
)

x

(t; f)

def

=

Z

t

0

x(t

0

)


�

(t

0

� t)e

�j2�ft

0

dt

0

;

and its correlation is de�ned as:

R

(x;
)

STFT

(t; f; t

0

; f

0

)

def

= EfSTFT

(
)

x

(t; f)STFT

(
)�

x

(t

0

; f

0

)g: (2.44)

The so{de�ned STFT correlation is a linear function of the correlation of x(t):

R

(x;
)

STFT

(t; f; t

0

; f

0

) =

Z

t

1

Z

t

2

r

x

(t

1

; t

2

)
(t

2

� t

0

)


�

(t

1

� t)e

�j2�(t

1

f�t

2

f

0

)

dt

1

dt

2

: (2.45)

However, a more illuminating form is obtained by introducing both the EAF of the process and the

ambiguity function of the window. When we insert (2.43) and (F.17) in the expression of the STFT

correlation (2.45) we have

R

(x;
)

STFT

(t; f; t

0

; f

0

) =

Z

t

1

Z

t

2

Z

�

1

Z

�

2

EA

x

(t

1

� t

2

; �

1

)A




(t

2

� t

0

� t

1

+ t; �

2

)

�e

j2�[�

2

(t

2

�t

0

)+�

1

t

1

�ft

1

+f

0

t

2

]

dt

1

dt

2

d�

1

d�

2

:

Using the substitution t

1

� t

2

= � and

t

1

+t

2

2

= �

0

the four{dimensional integral collapses to a two{

dimensional integral and one arrives at (for notational convenience we now replace t

0

by t� � and f

0

by f � �):

R

(x;
)

STFT

(t; f; t� �; f � �) =

Z

�

0

Z

�

0

EA

x

(�

0

; �

0

)A




(� � �

0

; � � �

0

) e

j2�[(�

0

��)(t��)+(�

0

�f)�

0

]

d�

0

d�

0

:

(2.46)

This relation implies a remarkable upper bound on the magnitude of the STFT correlation:

�

�

�

R

(x;
)

STFT

(t; f; t� �; f � �)

�

�

�

� jEA

x

(�; �)j � �jA




(�; �)j; (2.47)

i.e., this bound is \time{frequency stationary" in the sense that it depends only on the time lag �

and the frequency lag �. Hence, we have the intuitively appealing picture that the STFT correlation

is bounded by the inherent time{frequency correlation of the process as determined by jEA

x

(�; �)j,

smoothed by the time{frequency correlation of the window as expressed by jA




(�; �)j.

STFT{Correlation for StationaryWhite Noise. Stationary white noise with correlation function

r

x

(t; s) = �(t � s) is the unique \time{frequency{stationary" process. The EAF of stationary white

noise is ideally concentrated in the origin:

EA

x

(�; �) = �(�)�(�):
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Here, the magnitude of the STFT correlation depends only on the time{frequency lag variables �; �

and is given by the magnitude of the ambiguity function of the window:

�

�

�

R

(x;
)

STFT

(t; f; t� �; f � �)

�

�

�

2

= jA




(�; �)j

2

: (2.48)

Formal Deconvolution. Now, we have two fundamental problems: (i) The time{frequency correla-

tion is obviously four{dimensional except for the case of white noise which is the only time{frequency

stationary process, and (ii) the correlation depends on the choice of a window since there does not

exist a window{independent linear time{frequency signal representation. This is where the rigorously

inductive method ends and we have to switch to a heuristic reasoning.

As a formal way out of this twofold dilemma we start with the (idealized) assumption of the

nonexisting window with ideally concentrated ambiguity function (denoted by ��)

A

��

(�; �) = �(�)�(�):

Formally inserting this (idealized) ambiguity function in the STFT correlation formula (2.46) leads

to a two{dimensional quadratic correlation function that determines the magnitude of the STFT

correlation:

jR

(x;��)

STFT

(t; f; t

0

; f

0

)j

2

= jEA

x

(t� t

0

; f � f

0

)j

2

:

That is, by the formal trick of an idealized window we have found a way out of both sides of our

dilemma: (i) Our so de�ned time{frequency correlation function depends merely on the second order

statistic of the process and (ii) it is two{dimensional because the magnitude of the correlation of the

idealized STFT depends only on the lag variables. Alternatively, one may view this derivation as the

formal deconvolution of the upper bound (2.47)

10

:

�

�

�

R

(x;
)

STFT

(t; f; t� �; f � �)

�

�

�

� jEA

x

(�; �)j � �jA




(�; �)j:

We �nally note that this heuristic reasoning suggests that it is the (squared) magnitude of EA

x

(�; �)

which will be of practical interest, an observation that turns out to be particularly true as far as the

results of this thesis are concerned. Of course, to have a unique second order statistic of a nonstationary

process also requires knowledge of the phase of EA

x

(�; �) (it is the absolute time{frequency localization

of the process that is \encoded" in the phase). Moreover, in the course of this chapter we shall consider

a whole family of alternative de�nitions of a time{frequency correlation function that | fortunately

| have equal magnitude and di�er only in the phase.

2.4.2 Local Interpretation

In a non{point{wise manner one can interpret the EAF via a pair of (now realistically) well time{

frequency localized signals. The deterministic ambiguity function satis�es the fundamental property

(see (F.22))

hA

x

; A

h;g

i = hx; hihx; gi

�

;

which leads to a corresponding property of the EAF:

hEA

x

; A

h;g

i = E fhx; hihx; gi

�

g : (2.49)

This provides a useful (local) interpretation when we assume that the basis signals g(t) and h(t)

are well time{frequency localized and centered at di�erent spots of the time{frequency plane. We

10

This formal deconvolution is similar to the heuristic interpretation of the Wigner distribution as a spectrogram with

the (nonexisting) window that has an ideally concentrated Wigner distributionW




(t; f) = �(t)�(f), since the spectrogram

can be written as

SPEC

(
)

x

(t; f) =W

x

(t; f) � �W




(�t;�f):
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furthermore presuppose that the distance between these locations is large enough such that the cross

ambiguity function A

h;g

(�; �) is concentrated about a certain point (�

0

; �

0

) that is far away from the

origin. Then (2.49) allows to conclude that whenever EA

x

(�; �) is concentrated about the origin then

the coe�cients hx; hi and hx; gi are uncorrelated since EA

x

(�; �) and A

h;g

(�; �) do not overlap in their

essential supports. Figure 2.1 shows a schematic sketch of this situation.

With regard to the converse statement one has to be careful: Given an \overspread" process with

large spread of EA

x

(�; �) such that EA

x

(�; �) and A

h;g

(�; �) overlap, the two coe�cients hx; hi and

hx; gi may still be uncorrelated as both functions are typically highly oscillating and the inner product

may still vanish

11

.

In conclusion, we can say that the magnitude of the EAF allows to estimate the potential correlation

between di�erent locations of the time{frequency plane only in the form of an upper bound. With

other words, the EAF predicts stochastic orthogonality but it does not allow to predict correlation.

Note that this is fundamentally di�erent from the characterization of stationary processes via the

one{dimensional temporal correlation that allows to predict correlation in a precise sense.

Figure 2.1: On the interpretation of the EAF: (a) Time{frequency localization of h and g, (b) essential

support of EA

x

(�; �) and A

h;g

(�; �)

2.4.3 Spectral Decomposition and Related Properties

Based upon the process' KL expansion one can write the EAF as a KL eigenvalue{weighted sum of

the deterministic ambiguity functions of the KL eigensignals:

EA

x

(�; �) =

1

X

k=1

�

k

A

u

k

(�; �): (2.50)

This shows that when all KL eigensignals u

k

(t) are well time{frequency concentrated then EA

x

(�; �)

will be well concentrated about the origin of the (�; �){plane. Here, again, the converse statement is

generally not true.

The EAF takes on its maximum magnitude in the origin (as may be postulated for a correlation

function). This maximum is real{valued and equal to the trace of the correlation kernel (sum of the

Karhunen{Loeve eigenvalues �

k

which is equal to the process' expected energy):

EA

x

(0; 0) =

Z

t

r

x

(t; t)dt =

1

X

k=1

�

k

= trR

x

� jEA

x

(�; �)j : (2.51)

11

Later on in this chapter, we shall de�ne \overspread" processes in a precise manner.
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The total integral of the squared magnitude of the EAF is equal to the squared Hilbert{Schmidt

norm of the correlation operator:

Z

�

Z

�

jEA

x

(�; �)j

2

d� d� =

1

X

k=1

�

2

k

= kR

x

k

2

: (2.52)

2.4.4 Symmetry

The magnitude of the EAF is symmetric w.r.t. the origin:

jEA

x

(�; �)j = jEA

x

(��;��)j : (2.53)

For a real{valued process, jEA

x

(�; �)j is furthermore symmetric w.r.t. the �{axis:

jEA

x

(�; �)j = jEA

x

(�;��)j ; for x(t) 2 R: (2.54)

2.4.5 EAF of Important Processes

Wide{Sense Stationary Process. For a (wide{sense) stationary process with correlation function

r

x

(t; s) = �r

x

(t� s);

the EAF is ideally concentrated on the �{axis

EA

x

(�; �) = �r

x

(�)�(�):

This indicates that di�erent spectral components are uncorrelated.

NonstationaryWhite Noise. In the dual case of nonstationary white noise with correlation function

r

x

(t; s) = m

x

(t)�(t � s);

the EAF is ideally concentrated on the �{axis:

EA

x

(�; �) = �(�)M

x

(�):

Here, M

x

(�) denotes the Fourier transform of m

x

(t)

M

x

(�) =

Z

t

m

x

(t)e

�j2��t

:

Cyclostationary Process. A cyclostationary process is characterized by

r

x

(t; s) = r

x

(t + lT; s+ kT );

where k 2 Z and T is the period [137]. The EAF is ideally concentrated on equally spaced lines

parallel to the �{axis (for an illustration see Fig. 2.2):

EA

x

(�; �) =

X

k

�

k

(�) �

�

� �

k

T

�

;

where �

k

(�) are usually de�ned Fourier coe�cients [137] :

�

k

(�) =

1

T

T

Z

0

r

x

(t; t� �)e

�j2�

k

T

t

dt:
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Tapped Delay Line Process. The Fourier dual of the cyclostationary process is given by the output

of a tapped delay line de�ned as

x(t) =

N

X

n=1

a

k

y(t� nT );

driven by nonstationary white noise with correlation

r

y

(t; s) = m(t)�(t� s):

The EAF is ideally concentrated on lines parallel to the �{axis:

EA

x

(�; �) =

N�1

X

k=�N+1

�

k

(�) �(� � kT ):

The Fourier coe�cients �

k

(�) are determined by the tap weights a

k

as follows (M(�) is the Fourier

transform of m(t)):

�

k

(�) = M(�) �

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

N�

jkj

2

X

l=

jkj

2

+1

a

l+k=2

a

�

l�k=2

e

�j2��[l+k=2]T

for k even,

N�

jkj+1

2

X

l=

jkj+1

2

a

l+(k+1)=2

a

�

l�(k+1)=2+1

e

�j2��[l+(1+k)=2]T

for k odd.

Processes with Finite Temporal Correlation Width. A process with �nite temporal correlation

width is characterized by a �nite �{support of

~r

x

(t; �) = r

x

(t; t� �):

We denote the correlation width by �

0

. We characterize the �nite support by

~r

x

(t; �) = ~r

x

(t; �)�

[��

0

;�

0

]

(�);

where �

[��

0

;�

0

]

(�) denotes the indicator function of the interval [��

0

; �

0

].

A zero{mean, normal process with �nite correlation width is a special case of a so{called a{

dependent process (with a = �

0

), which is de�ned by requiring statistical independence of the random

variables x(t

1

) and x(t

2

) whenever jt

1

� t

2

j > a [267, p.302].

Finite correlation width means in particular that two windowed versions of x(t), de�ned as

w

1

(t) = x(t)�

[�T;T ]

(t� t

1

);

w

2

(t) = x(t)�

[�T;T ]

(t� t

2

);

are uncorrelated whenever the windows cover two separate intervals with the gap greater than �

0

:

E fw

1

(t)w

�

2

(s)g = 0 for jt� sj � 2T > �

0

:

The �nite correlation width is re
ected in the �{support of the EAF:

EA

x

(�; �) = EA

x

(�; �)�

[��

0

;�

0

]

(�); (2.55)

since one has

EA

x

(�; �) = F

t!�

~r

x

(t; �):
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Processes with Finite Spectral Correlation Width. The Fourier dual of the �nite correlation

width process may be de�ned by a �nite spectral correlation width. The spectral correlation is de�ned

as

B

x

(f; f

0

) = E

�

X(f)X

�

(f

0

)

	

;

�nite spectral correlation width can thus be characterized by:

B

x

(f; f � �) = B

x

(f; f � �)�

[��

0

;�

0

]

(�):

The EAF can be written as:

EA

x

(�; �) =

Z

f

B

x

(f; f � �)e

j2�(f��)�

df;

such that one has �nite �{support (dual to (2.55))

EA

x

(�; �) = EA

x

(�; �)�

[��

0

;�

0

]

(�):

However, when we recall the de�nition of the EAF

EA

x

(�; �) = F

t!�

~r

x

(t; �);

we have the fact that �nite spectral correlation width is equivalent to the requirement that r

x

(t; t� �)

be a lowpass function of t.

Quasistationary Process. Quasistationary processes are often only vaguely de�ned by requiring

slow time{variation. This can be made precise by the above discussed �nite spectral correlation width.

However, in the context of this work it is remarkable how Papoulis de�nes quasistationarity [267,

p. 302]: A process with �nite temporal correlation width �

0

is quasistationary whenever the following

approximation holds:

~r

x

(t; �) � ~r

x

(t + �t; �) for �t < �

0

: (2.56)

We now show that a (�nite expected energy) process with appropriately limited product of temporal

and spectral correlation width is quasistationary in the sense of Papoulis.

First, we reformulate the requirement (2.56) by selecting a small constant �:

j~r

x

(t + �t; �)� ~r

x

(t; �)j � � for �t < �

0

: (2.57)

Hence, we have to show that to any given � we can �nd constants �

0

(temporal correlation width) and

�

0

(spectral correlation width) such that (2.57) holds true.

Bernstein's inequality for bandlimited functions [267, p. 144] allows to conclude that

�

�

�

�

@~r

x

(t; �)

@t

�

�

�

�

� 2��

0

max

t

j~r

x

(t; �)j : (2.58)

Based on (2.51) we have

j~r

x

(t; �)j �

�

0

Z

��

0

jEA

x

(�; �)j d� � 2�

0

trR

x

;

such that we have a bound in terms of the expected energy trR

x

:

�

�

�

�

@~r

x

(t; �)

@t

�

�

�

�

� 4��

2

0

trR

x

:
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With the mean{value theorem of di�erential calculus we have:

j~r

x

(t + �t; �)� ~r

x

(t; �)j � 4��

2

0

trR

x

j�tj: (2.59)

Hence, we can easily compute the condition

�

0

p

�

0

<

r

�

4�trR

x

;

which �nishes our proof. We have thus shown that a process with properly limited product of temporal

and spectral correlation width is quasistationary in the sense of Papoulis.

Locally Stationary Process. A locally stationary process has been precisely de�ned in [329] via a

separable correlation function of the form:

r

x

(t; s) = m

�

t + s

2

�

r(t� s):

The magnitude of the EAF is given by:

jEA

x

(�; �)j = jr(�)M(�)j ;

which shows that whenever i) m(t) is bandlimited

M(�) = M(�)�

[��

0

;�

0

]

(�);

and ii) r(�) has compact support

r(�) = r(�)�

[��

0

;�

0

]

(�);

then the EAF support is restricted to a centered rectangular domain,

EA

x

(�; �) = EA

x

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�):

Uniformly Modulated Process. A uniformly modulated process is a nonstationary random process

x(t) that has been de�ned by Priestley [287] as the product of a stationary, zero{mean random process

x

s

(t) and a modulation function m(t):

x(t) = m(t)x

s

(t):

(Priestley furthermore requires a modulation function with m(0) = 1 and j(F

t!f

m)(0)j � j(F

t!f

m)(f)j,

which is satis�ed for a usual window function.) The autocorrelation function of such a process is given

by:

r

x

(t; s) = m(t)m

�

(s)r

s

(t� s); with r

s

(t� s) = Efx

s

(t)x

�

s

(s)g:

The EAF is given by the product of the correlation function of the stationary process x

s

(t) and the

ambiguity function of the modulation function m(t),

EA

x

(�; �) = r

s

(�)A

m

(�; �):

Whenever (i) the modulation function is strictly lowpass and (ii) the correlation of the stationary

process has �nite support, we can conclude that the EAF lies inside a rectangle about the origin of

the (�; �){plane.

Figure 2.2 shows the support of the time{frequency correlation function for the above considered

processes.
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Figure 2.2: Support of the EAF for important classes of processes: (a) Stationary process, (b) nonsta-

tionary white process, (c) stationary white process, (d) locally stationary process, (e) "tapped delay

line" process, (f) cyclostationary process.

2.4.6 Generalized EAF

In order to relate the EAF to the generalized Wigner{Ville spectrum we now switch to the generalized

EAF, de�ned as the expectation of the generalized ambiguity function (the stochastic pendant to

(F.19))

EA

(�)

x

(�; �)

def

= EfA

(�)

x

(�; �)g =

Z

t

r

x

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2��t

dt:

(2.60)

the previously discussed EAF in particular is obtained by setting � = 1=2. The mutual interrelation

of the generalized EAF members is given by an unimodular factor:

EA

(�)

x

(�; �) = EA

(0)

x

(�; �)e

�j2����

: (2.61)

Hence, the magnitude of EA

(�)

x

(�; �) is �{invariant:

�

�

�

EA

(�

1

)

x

(�; �)

�

�

�

=

�

�

�

EA

(�

2

)

x

(�; �)

�

�

�

:

2.4.7 Interrelation of EAF and Time{Varying Spectra

Generalized Wigner{Ville Spectrum. The generalized Wigner{Ville spectrum is the symplectic

2D Fourier transform of the EAF

EW

(�)

x

(t; f) =

Z

�

Z

�

EA

(�)

x

(�; �)e

�j2�(�f��t)

d� d� = F

�!f

F

�1

�!t

n

EA

(�)

x

(�; �)

o

; (2.62)

a relation that may be seen as the (consistent) generalization of the Wiener{Khintchine relation

(2.3) to nonstationary processes (or as the stochastic counterpart of the interrelation of the Wigner
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distribution and the ambiguity function (F.23)).

Physical Spectrum. The physical spectrum can be written as a smoothed generalized Wigner{Ville

spectrum (see (2.33)). Using the just discussed \nonstationary Wiener{Khintchine" relation (2.62)

one has

ESPEC

(
)

x

(t; f) = F

�!f

F

�1

�!t

n

EA

(�)

x

(�; �)A

(�)�




(�; �)

o

;

where A

(�)




(�; �) is the generalized ambiguity function of the window.

Evolutionary Spectrum. In order to relate the evolutionary spectrum to the EAF we have to use

the spreading function of the innovations system

12

. The generalized EAF is formally equivalent to the

generalized spreading function of the correlation operator:

EA

(�)

x

(�; �) = S

(�)

R

x

(�; �):

The evolutionary spectrum can be written as

ES

x

(t; f) = F

�!f

F

�1

�!t

n

S

(1=2)

H

(�; �) � �S

(1=2)�

H

(�; �)

o

; (2.63)

where S

(1=2)

H

(�; �) is the asymmetrical spreading function of the innovations system and �� denotes

convolution:

S

(1=2)

H

(�; �) � �S

(1=2)�

H

(�; �)

def

=

Z

�

0

Z

�

0

S

(1=2)

H

(� � �

0

; � � �

0

)S

(1=2)�

H

(�

0

; �

0

)d�

0

d�

0

:

Formulating the generalized EAF in terms of the spreading function of the innovations system leads

to the so{called twisted convolution:

EA

(�)

x

(�; �) =

Z

�

0

Z

�

0

S

(�)

H

(� � �

0

; � � �

0

)S

(�)�

H

(�

0

; �

0

)e

�j2��(�;�;�

0

;�

0

;�)

d�

0

d�

0

(2.64)

with

�(�; �; �

0

; �

0

; �) = �

0

�(� + 1=2) + ��

0

(� � 1=2) � 2�

0

�

0

�:

Observe that up to the unimodular factor e

�j2��(�;�;�

0

;�

0

;�)

, the twisted convolution (2.64) looks similar

to a usual convolution. As will be used later, we already mention that with regard to support relations

of EA

(�)

x

(�; �) and S

(�)

H

(�; �) the twisted convolution behaves just like a regular convolution. For a

discrete setting (�; � 2 Z) it is trivial to see that for self{adjoint H (where one has jS

(�)

H

(�; �)j =

jS

(�)

H

(��;��)j) the twisted convolution and the usual convolution enlarge the support by a factor two

in both directions

13

. For the continuous{time setting a precise proof may be based on Titchmarsh's

convolution theorem [195, p.178].

2.5 Processes with Compactly Supported EAF

In previous sections we have seen that three classical de�nitions of mildly nonstationary processes, i.e.,

Silverman's locally stationary, Papoulis' quasistationary, and Priestley's uniformly modulated process,

are all essentially characterized by a compactly supported EAF. This suggests to study such processes

in more detail.

12

The spreading function of a linear system will be explained in more detail in Chapter 4, the properties and relations

are summarized in Appendix B.

13

For many practical applications it is su�cient to study processes on a limited rectangle of the time{frequency{plane

[�T=2; T=2] � [�F=2; F=2], of course, with TF � 1. Formal periodization of the Wigner{Ville spectrum with periods

T; F leads to a time{frequency periodic process whose expected ambiguity function is given by a superposition of delta

distributions on the reciprocal grid (k=F; l=T ) (k; l 2 Z). Hence, in this case one can work with a discrete (�; �){domain.
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We characterize the support of the EAF by a separable 0=1{valued indicator function with mini-

mum area such that

EA

(�)

x

(�; �) = EA

(�)

x

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�); (2.65)

and we call

�

x

def

= 4�

0

�

0

; (2.66)

total spread. Based upon this characterization we classify nonstationary processes in underspread for

�

x

� 1 and overspread for �

x

� 1 (see Figure 2.3) [209]. Moreover, we call two underspread processes

with identical (�

0

; �

0

) jointly underspread.

Figure 2.3: Support of the expected ambiguity function for the following processes: (a) �nite temporal

correlation, (b) �nite spectral correlation, (c) underspread process (assuming 4�

0

�

0

� 1).

Here, we have employed the system theoretic terminology [197], where linear time{varying systems

are characterized through the essential support of their spreading function or its stochastic pendant,

the scattering function, respectively. Mathematically, the EAF characterization of nonstationary

process and the spreading characterization of linear systems are equivalent due to the equivalence of

the time{frequency correlation function and the spreading function of the correlation operator (2.42).

Note that the underspread/overspread classi�cation is not merely based on the degree of nonsta-

tionarity (temporal variation of statistics), rather it takes into account the variation of the process

second order statistic in both time and frequency direction. This aspect will become clearer by study-

ing the impact of the underspread/overspread classi�cation on classical de�nitions of a time{varying

power spectrum of a nonstationary process.

2.5.1 Canonical Reformulation of the Wigner{Ville Spectrum

Based on the \nonstationary Wiener{Khintchine relation" (2.62) the (�; �){domain support constraint

(2.65) carries over to an idempotent (t; f){domain convolution:
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(�)
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x
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�!f
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�!t

�

[��
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;�

0

]

(�)�

[��

0

;�

0

]

(�)

�

:

By using the shift{invariance property of the generalized Weyl symbol ((C.15)) we can interpret the

convolution kernel as symbol of an �{dependent prototype operator P(�):

EW

(�)

x

(t; f) � �L

(�)

P (�)

(t; f) =

Z

�

Z

�

EW

(�)

x

(�; �)L

(�)

P (�)

(t� �; f � �)d� d�

=

Z

�

Z

�

EW

(�)

x

(�; �)L

(�)

P

(�;�)

(�)

(t; f)d� d�:
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Switching from symbols to operators gives an alternative continuous Weyl{Heisenberg expansion of

the correlation operator:

R

x

=

Z

t

Z

f

EW

(�)

x

(t; f)P

(t;f)

(�)dt df; (2.67)

where the prototype operator is characterized by the spreading constraint as follows:

S

(�)

P (�)

(�; �) = �

[��

0

;�

0

]

(�)�

[��

0

;�
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]

(�) (2.68)

m
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(t� s):

The so{de�ned prototype operator is quite di�erent from that introduced in Section 2.3.2 (it ap-

proaches that operator asymptotically for �

0

; �

0

!1). It is Hilbert{Schmidt with the norm given by

the total spread:

kP(�)k

2

= �

x

:

Note, moreover, that we can rede�ne the Wigner{Ville spectrum for a process that satis�es (2.65) by

an operator inner product (analogous to (2.29)):

EW

(�)

x

(t; f) =

D

R

x

;P

(t;f)

(�) i (2.69)

It should be emphasized that the continuous Weyl{Heisenberg expansion (2.67) and the operator inner

product formulation (2.69) are not uniquely de�ned. In fact when we replace P(�) by an operator

P

0

(�) whose spreading function satis�es

S

(�)

P

0

(�)

(�; �) =

(

1; for (�; �) 2 [��

0

; �

0

]� [��

0

; �

0

];

arbitrary; else;

(2.70)

both (2.67) and (2.69) hold true. However, with the unitarity of the spreading function we know that

kS

H

(�; �)k = kHk:

Hence, among all possible candidate prototype operators that satisfy (2.70) the speci�c prototype op-

erator de�ned by (2.68) is canonical in so far as it achieves minimum Hilbert{Schmidt norm. Moreover,

in Appendix D we show that this speci�c prototype operator establishes an optimum time{frequency

shift{invariant estimator of real{valued spectra in the following form

b

EW

(0)

x

(t; f) =

D

P

(t;f)

(0)y; y

E

;

where y(t) is a noisy observation of x(t).

2.5.2 Stochastic Sampling Principle

In view of the Fourier correspondence between the generalized Wigner{Ville spectrum and the EAF

(2.62) we see that the previously de�ned underspread condition implies a smoothness condition of the

time{varying spectrum of the process.
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Using the theory of the generalized Weyl correspondence (see Appendix C) and the sampling

principle for 2D signals leads to a discrete Weyl{Heisenberg expansion of the correlation operator:

R

x

= TF

X

l

X

m

EW

(�)

x

(lT;mF )P

(lT;mF )

(�) (2.71)

m

r

x

(t; s) =

X

l

X

m

EW

(�)

x

(lT;mF )p

�

(t� lT; s� lT )e

j2�mF (t�s)

;

valid for a sampling grid with

T �

1

2�

0

and F �

1

2�

0

: (2.72)

Without going into details we note that it is obvious that the critical spread �

x

= 1 plays a theoretically

interesting role as it corresponds to the critical grid

TF = 1;

which in turn means that in this case the rate of innovation in the second order statistic of the

process is equal to the critical sampling rate of one realization (considering bandlimited processes).

Moreover, the theoretical study of underspread operators in Chapter 5 will show the fact that, from

a mathematical point of view, it is the class of underspread processes where the terminology of a

time{varying spectrum makes sense

14

.

Recall that the power spectrum of a stationary process is the eigenvalue distribution of its correla-

tion operator. Hence in the fundamental interpretation of the generalized Wigner{Ville spectrum as a

time{varying power spectrum we interpret the samples EW

(�)

x

(lT;mF ) as (approximate) eigenvalues

of the correlation operator such that (2.71) should be a Weyl{Heisenberg structured version of the KL

based spectral decomposition:

R
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1
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(2.73)
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(t)u

�

k

(s):

The conceptual correspondence between (2.71) and (2.73) does not work in a precise sense since the

prototype operator P(�) is not an orthogonal projection operator. In Chapter 5 we shall discuss

various mathematical theorems that support the eigenvalue interpretation of the GWS samples. It is

important to emphasize that the (approximate) eigenvalue interpretation of EW

(�)

x

(lT;mF ) implies

an (approximate) multiplicity of the KL eigenvalues of 1=�

x

as can be seen from the discrete trace{

formula

X

l

X

m
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(�)

x

(lT;mF ) =

1

TF

1

X

k=1

�

k

= �

x

trR

x

: (2.74)

Multiplicity of the KL eigenvalues means that underspread processes are time|frequency locally

white in the same sense as stationary processes are approximately white over frequency bands with

small variation of the power spectrum. However, one should be aware that mathematically precise

14

To be precise, we should additionally admit any (centered) symplectic relatives of the rectangular domain in our

underspread de�nition (sheared or rotated versions of the rectangular domain). However, in view of the classical def-

initions of limited nonstationarity, rectangular symmetry seems to be of predominant practical interest. Moreover, for

real{valued processes a sheared or rotated underspread support is excluded due to the symmetry w.r.t. to the �{axis

(see (2.54)).



30 TF{REPRESENTATION AND CLASSIFICATION OF RANDOM PROCESSES

the EW

(�)

x

(t; f){samples depend both on the KL eigenvalues and the KL eigensignals of the process.

Which means that two underspread processes with identical (�

0

; �

0

) do not necessarily have a common

KL eigenbasis. We also emphasize that one has to be cautious when using the discrete trace formula

(2.74) for a characterization of the approximate rank of time{frequency{localized KL subspaces

15

. In

Chapter 5 we shall see that it is the ratio T=F which establishes a grid matching rule which remains

valid whatever goodness of approximation of the KL subspaces one requires. Whereas the rank of

the subspaces depends strongly on the required approximation threshold. Moreover, much in this

spirit, we shall return to the matched grid ratio in the statistical optimization of the Gabor expansion,

where TF is determined by pragmatical considerations while T=F has to be matched to the a priori

knowledge.

The physical spectrum is a smoothed version of the GWS which means that the sampling grid for

the GWS is also su�cient for sampling the physical spectrum without loss of information.

With regard to Priestley's evolutionary spectrum we note that, under the assumption of an under-

spread innovations system, using the \two{step" relation to the EAF (2.63), (2.64), it easy to see that

for a self{adjoint innovations system (whose generalized spreading function has a magnitude which

is symmetrical w.r.t. the origin, see (B.25)) the evolutionary spectrum is a 2D lowpass function with

exactly the same bandlimits as the generalized Wigner{Ville spectrum.

Hence, we have shown that any of the classical de�nitions of a time{varying power spectrum of

a process with compactly supported EAF can be sampled without loss of information on the grid as

determined by (2.72). One has a general stochastic sampling principle (formulation of (2.72) in a more

intuitively appealing form):

T

F

=

�

0

�

0

and TF =

1

4�

0

�

0

=

1

�

x

: (2.75)

2.5.3 Asymptotic Equivalence of Time{Varying Spectra

For stationary processes all of the above mentioned window{independent spectrum de�nitions yield

the conventional power spectrum. The stationary process may be seen as a limit case of an under-

spread process, and in fact, for underspread processes with underspread innovations representation the

evolutionary spectrum is essentially equal to the generalized Wigner{Ville spectrum [211]

16

. The proof

of this fact can be based on the theory of the symbolic calculus of underspread operators as follows

(detailed proofs can be found in Chapter 5).

As pointed out in the previous section, we know that given a self{adjoint underspread innovations

system H with spreading constraints (�

0

=2; �

0

=2), white noise excitation leads to an underspread

process whose correlation operator has spreading constants (�

0

; �

0

). Then, Theorem 5.1 allows to

conclude that
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�

(t; f) = L

(1=2)

R

x

(t; f) = EW

(1=2)

x

(t; f);

we have the approximate equivalence of the evolutionary spectrum de�ned by (2.36) and the general-

ized Wigner{Ville spectrum with � = 1=2:

ES

x

(t; f) � EW

(1=2)

x

(t; f):

15

Subspaces spanned by KL eigensignals with identical KL eigenvalues.

16

Numerical experiments indicate that the existence of an underspread innovations representation seems not necessary.

However, for our proof this assumption is crucial.
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Due to (2.36), Priestley's de�nition stands conceptually closer to the Rihaczek spectrum (generalized

Wigner{Ville spectrum with � = 1=2) . With the approximate �{invariance of the generalized Weyl

symbol of underspread operators | as will be quanti�ed in Theorem 5.5, Chapter 5 | we can fur-

thermore show that the evolutionary spectrum approaches any member of the EW

(�)

x

{family with

decreasing spread of the process. Theorem 5.5 and 5.1 yield the following bounds
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Combining these inequalities leads to the following result, valid for �

x

< 1=2:
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where for notational simplicity we have made the bound coarser by utilizing sin(x) < x for x 2

[0; �=2]. This formula relates all of the classical window independent de�nitions of a time{varying

signal spectrum in the form of an L

1

{bound valid for underspread processes.

2.6 Numerical Experiments

As an illustration for the above discussed theoretical results we consider two numerical experiments

about zero{mean, �nite{length, discrete{time nonstationary processes synthetically de�ned by a co-

variance matrix, i.e., the computation of the various spectra is based on complete knowledge of the

second{order statistics. The discrete implementation of the generalized Weyl correspondence is the

key problem of this experiment.

The map that underlies the Weyl symbol (� = 0), (t; �) 7! (t + �=2; t � �=2), is not directly dis-

cretizable while the map underlying the Kohn{Nirenberg correspondence (� = 1=2), (t; �) 7! (t; t��),

can be trivially discretized. In particular one can formulate a discrete Kohn{Nirenberg correspondence

as a unitary one{to{one mapping of N �N matrices by

L

(1=2)

H

[n; k] =

N�1

X

m=0

H

�

n; (n�m)

modN

�

e

�j2�

mk

N

; n; k 2 [0; N � 1];

which is impossible for the Weyl correspondence. One pragmatical way out of this dilemma is to

compress the matrix at hand onto the space H of halfband signals (complex signals whose spectrum

vanishes over its half length)

H

H

= P

H

HP

H

;

where P

H

denotes the halfband projection operator and H

H

is the compressed matrix. This procedure

maps an N � N matrix on a 2N � 2N matrix. For such a half{band compressed matrix, one can

de�ne a discrete N �N Weyl symbol as:
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; (n�m)
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�

e

�j4�
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N

; n; k 2 [0; N � 1]:

Such an ad hoc implementation keeps the desirable behavior of the Weyl correspondence for operators

with chirp{like eigenfunctions. However, this approach comes at the cost of (i) loss of unitarity and

(ii) considerably increased memory and computational expense.
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Figure 2.4 shows contour plots of various spectra of an underspread process. The process has been

synthesized by de�ning an innovations system in the form of a moderately time{variant bandpass

�lter. The total spread has been chosen near to the critical threshold, see Fig. 2.4(j). This choice

leads to visible di�erences between the various window independent spectrum de�nitions. In the

middle (chirpy) part of the process, one can observe the better concentration of the � = 0, Weyl{type

spectra Fig. 2.4(f) and Fig. 2.4(i) compared to the � = 1=2, Kohn{Nirenberg type spectra Fig. 2.4(g)

and Fig. 2.4(h). Another observation that can be predicted from theory is the dramatic in
uence of

the window on the appearance of the physical spectrum for one and the same process. The matched

window has been computed according to the theory presented in the following chapter. The matched

window physical spectrum gives a satisfactory process representation, see Fig. 2.4(e).
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Figure 2.4: Various time{varying power spectra of an underspread process: (a) one realization of

the process, (b) three di�erent window functions: 


l

(t) � � � \long" window, 


s

(t) � � � \short" window,




o

(t) � � �matched window, (c) physical spectrum using 


l

(t), (d) physical spectrum using 


s

(t), (e)

physical spectrum using 


o

(t), (f) Wigner{Ville spectrum, (g) Rihaczek spectrum (generalized Wigner{

Ville spectrum with � = 1=2), (h) evolutionary spectrum (generalized evolutionary spectrum with

� = 1=2), (i) generalized evolutionary spectrum with � = 0, (j) expected ambiguity function.

The dramatic divergence of the various power spectra for an overspread process is the topic of Figure

2.5. We de�ned an overspread innovations system in a piecemeal fashion by putting together highly

temporally localized and highly frequency localized eigen{components. Although the corresponding
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process certainly has some speci�c time{frequency{structure, its overspread behavior leads to the

theoretically expected result: None of the classical de�nitions of a time{varying power spectrum allows

to learn about the basic structure of the process. It is only the combined observation of a \short{

window" (wideband) physical spectrum and a \long{window" (narrowband) physical spectrum that

elucidates the structure of the process. This fact can be explained by the window matching theory

of the following chapter: The considered overspread process is a combination of two underspread

processes (one of them is almost nonstationary white and the other almost stationary) which are not

jointly underspread. Hence, the short window is matched to the almost nonstationary white process

and the long window is matched to the stationary process. It should be emphasized that the combined

consideration of narrowband/wideband spectrograms is in common use by speech analysts.
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Figure 2.5: Various time{varying power spectra of an overspread process: (a) one realization of

the process, (b) three di�erent window functions: 


l

(t) � � � \long" window, 


s

(t) � � � \short" window,




o

(t) � � � \middle duration" window, (c) physical spectrum using 


l

(t), (d) physical spectrum using




s

(t), (e) physical spectrum using 


m

(t), (f) Wigner{Ville spectrum, (g) Rihaczek spectrum (gener-

alized Wigner{Ville spectrum with � = 1=2), (h) evolutionary spectrum (generalized evolutionary

spectrum with � = 1=2), (i) generalized evolutionary spectrum with � = 0, (j) expected ambiguity

function.
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2.7 Summary

From an operator diagonalization point of view the Fourier transform is matched to wide{sense sta-

tionary processes and the Karhunen{Loeve (KL) transform to nonstationary processes with �nite

expected energy. We have pointed out two di�erent ways of deriving the KL transform given the

correlation operator of a zero{mean random process: (i) The KL transform can be obtained by diag-

onalizing the correlation operator. (ii) Alternatively, the KL transform yields optimum concentration

of the diagonal coe�cients.

The Wiener �lter served as an example for the relevance of diagonalizing transforms. Using a

diagonalizing transform, the abstract Wiener �lter, H

MMSE

= R

x

(R

x

+R

n

)

�1

; can be reformulated

by scalar operations. In the stationary case one has in terms of the power spectra of the signal and

noise processes:

H

MMSE

(f) =

S

x

(f)

S

x

(f) + S

n

(f)

;

while in the nonstationary case (with commuting signal and noise correlation operators) the Wiener

�lter is determined by the KL eigenvalues of the signal and noise process: �

(MMSE)

k

=

�

(x)

k

�

(x)

k

+�

(n)

k

:

We have reviewed the most prominent de�nitions of a stochastic time{varying spectrum, the

(window{dependent) physical spectrum, the generalized Wigner{Ville spectrum and the generalized

evolutionary spectrum. We have introduced a compact notation for time{frequency shifting of linear

operators in the form

P

(t;f)

def

= M

f

T

t

P (M

f

T

t

)

�1

;

where M

f

T

t

denotes a time{frequency shift operator. With this notation, one can formulate all of the

considered de�nitions of a time{varying spectrum by a (formal) operator inner product. The physical

spectrum can be written as
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E

;

where P




is the rank{one projection operator onto the analysis window.

The generalized Wigner{Ville spectrum,
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;

and the generalized evolutionary spectrum
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2

are based on the same (�{dependent) in�nitesimal prototype operator which can be de�ned via the

generalized Weyl correspondence as L

(�)

P (�)

(t; f) = �(t)�(f): We have pointed out the limited relevance

of the time{varying spectra for general nonstationary processes due to a lack of a point{wise inter-

pretation. This becomes obvious when asking about the time{frequency formulation of the Wiener

�lter:

H

MMSE

(t; f)

?

=

E

x

(t; f)

E

x

(t; f) + E

n

(t; f)

:

We have discussed the expected ambiguity function EAF as an alternative second{order process

representation. Based on the EAF we have introduced a fundamental classi�cation of nonstationary

random processes: Underspread processes are de�ned by a small product of spectral and temporal

correlation width and, conversely, overspread processes by a large product. It has been shown that

all of the considered time{varying spectra are 2D lowpass functions with identical bandlimits and are

asymptotically equivalent (to include the physical spectrum we have to assume a matched window).

For underspread processes the time{frequency formulation of the nonstationary Wiener �lter indeed

makes sense as we shall learn from the following chapters.



Chapter 3

Matched Weyl{Heisenberg Expansions

of Nonstationary Processes

We derive the statistically optimum STFT/Gabor window matched to the second order statistic of a

nonstationary process in the sense of an optimum approximate diagonalization via a Weyl{Heisenberg

structured signal set. The STFT window criterion is compared to other criteria aiming at minimum

global/local bias in spectrogram based estimation of the Wigner{Ville spectrum. For underspread pro-

cesses, the matched window physical spectrum (expected spectrogram) is shown to provide a complete

second order statistic. We discuss a simple window adaptation rule based on optimizing the duration

for a given window shape. Finally, the extension to multiwindow methods is brie
y pointed out.

3.1 Optimally Uncorrelated STFT Expansion

We assume a zero{mean, nonstationary, �nite energy process x(t) characterized by its correlation

function r

x

(t; s) = Efx(t)x

�

(s)g. When applying the short{time Fourier transform (STFT) to x(t)

it is our implicit hope that the STFT does quite the same job for a nonstationary process which the

Fourier transform does for a stationary process. In particular, when the process x(t) is assumed to

be slowly nonstationary one may argue that the windowed portion of x(t) is in good approximation

second{order time{invariant (\locally stationary") which in turn justi�es to decorrelate this portion

via the Fourier transform. Although we know that precise decorrelation requires the Karhunen{Loeve

transform it is still worthwhile to study the statistics of the STFT.

Statistics of the STFT.The STFT of the zero{mean, nonstationary process x(t) is a two{dimensional

(nonstationary) process that is also zero{mean,

E

n

STFT

(
)

x

(t; f)

o

= 0;

and its four{dimensional correlation has been obtained in the previous chapter as

R

(x;
)

STFT

(t; f; t� �; f � �) =

Z

�

0

Z

�

0

EA

x

(�

0

; �

0

)A




(� � �

0

; � � �

0

) e

j2�[(�

0

��)(t��)+(�

0

�f)�

0

]

d�

0

d�

0

;

where EA

x

(�; �) is the expected ambiguity function of the process and A




(�; �) is the ambiguity

function of the window.

Continuous O�{Diagonal Norm. Exact decorrelation, i.e.,

R

(x;
)

STFT

(t; f; t

0

; f

0

)

?

= 0 for (t 6= t

0

) _ (f 6= f

0

); (3.1)

is impossible because the underlying expansion set 


(t;f)

(s) = 
(s � t)e

j2�fs

is highly linear depen-

dent and statistically orthogonal coe�cients require as a �rst prerequisite deterministic orthogonality.
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However, we expect that depending on the choice of the window function the decorrelating property

(3.1) holds in an approximate sense.

An obvious way to measure the deviation from optimum decorrelation (i.e. optimum diagonal-

ization of a correlation operator) is a continuous o�{diagonal norm (similar to the discrete case o�{

diagonal norm (2.11) that formally led to the KL transform):

M

K

(x; 
)

def

=

Z

t

Z

f

Z

�

Z

�

�

�

�

R

(x;
)

STFT

(t; f; t� �; f � �)

�

�

�

2

(1�K(�; �)) dt df d� d�; (3.2)

where K(�; �) is a radially non{increasing smoothing function satisfying

K(0; 0) = 1;

@K(�; �)

@�

� 0;

@K(�; �)

@�

� 0; 0 � K � 1; (3.3)

such that 1�K(�; �) penalizes the o�{diagonal spread of R

(x;
)

STFT

(t; f; t

0

; f

0

).

It must be additionally noted that the L

2

{norm of R

(x;
)

STFT

(t; f; t

0

; f

0

) is equal to the L

2

{norm of

the correlation function (we always assume k
k = 1)

kR

(x;
)

STFT

k

2

=

Z

t

Z

f

Z

t

0

Z

f

0

�

�

�

R

(x;
)

STFT

(t; f; t

0

; f

0

)

�

�

�

2

dt df dt

0

df

0

=

Z

t

Z

f

Z

t

0

Z

f

0

Z

t

1

Z

t

2

Z

t

3

Z

t

4

r

x

(t

1

; t

2

)


(t

0

;f

0

)

(t

2

)


(t;f)�

(t

1

)

�r

�

x

(t

3

; t

4

)


(t

0

;f

0

)�

(t

4

)


(t;f)

(t

3

)dt df dt

0

df

0

dt

1

dt

2

dt

3

dt

4

=

Z

t

1

Z

t

2

jr

x

(t

1

; t

2

)j

2

dt

1

dt

2

= kR

x

k

2

; (3.4)

where we have used the STFT{based resolution of the identity (F.2)

Z

t

Z

f




(t;f)

(t

1

)


(t;f)�

(t

2

)dt df = �(t

1

� t

2

):

Hence, the global correlation measure M

K

(x; 
) is well de�ned for any process with square{

integrable correlation function.

The Optimum Window. The correlation of the STFT coe�cients depends on the process x(t)

and the analysis window 
(t). Matching the STFT to the process in the sense of minimum global

correlation is thus equivalent to the following window optimization problem:




opt;1

(t) = arg min




M

(x;
)

K

subject to k
k = 1: (3.5)

The expression for the STFT correlation (2.46) and in particular its special form for white noise

(2.48):

�

�

�

R

(n;
)

STFT

(t; f; t� �; f � �)

�

�

�

2

= jA




(�; �)j

2

suggests an ideal window with A




(�; �)

?

= �(�)�(�) for which the magnitude of the STFT would indeed

be given by the magnitude of the process' time{frequency correlation:

A




(�; �)

?

= �(�)�(�) =)

�

�

�

R

(x;
)

STFT

(t; f; t� �; f � �)

�

�

�

= jEA

x

(�; �)j:
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However, the radar uncertainty principle ((F.29) for a normalized signal, k
k = 1)

Z

�

Z

�

jA




(�; �)j

2

d� d� = 1; with A




(0; 0) = 1;

forbids the existence of such an ideal window. Notwithstanding this fundamental limitation we know

that di�erent windows may yield di�erent amount of additional, undesired time{frequency correlation.

This is what we quantify by the global STFT correlation M

K

(x; 
) de�ned in (3.2).

Based on (2.46) the global STFT correlation is given by:

M

K

(x; 
) =

Z

t

Z

f
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1
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1
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2
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2

;

where four integrals collapse and we obtain the following expression for the o�{diagonal norm

M

K

(x; 
) = kR

x

k

2

�

Z

�

Z

�

jA




(�; �)j

2

2

4

Z

�

0

Z

�

0

jEA

x

(�

0

; �

0

)j

2

K(� � �

0

; � � �

0

)d�

0

d�

0

3

5

d� d�:

Minimizing M

K

(x; 
) by an optimal choice of 
(t) is thus equivalent to the maximization of an L

2

(R

2

){

inner product of the smoothed magnitude{squared expected ambiguity function of the process and

the ambiguity function of the window:




opt;1

= arg min




M

K

(x; 
) = arg max




D

jEA

x

j

2

� �K ; jA




j

2

E

; k
k = 1: (3.6)

The limit case smoothing kernel K(�; �) = �(�)�(�) does not correspond to an admissible penalty

function (i.e., it does not satisfy (3.3)). In the following section we show however that | from a

slightly di�erent view of measuring the eigenfunction deviation | K(�; �) = �(�)�(�) makes sense in

(3.6).

3.1.1 Matching via Orthogonality Principle

Recall that optimum decorrelation of a nonstationary process is equivalent to the diagonalization of its

correlation operator. If we restrict ourselves to a set of time{frequency shifted versions of the analysis

window, f


(�;�)

g, we hope that any member of this set is an approximate eigensignal of R

x

. For each

individual time{frequency shifted version 


(�;�)

(t) we can measure the deviation from an eigenfunction

of R

x

by splitting up (R

x




(�;�)

)(t) into a scalar multiple of 


(�;�)

and an error function

�

R

x




(�;�)

�

(t) = c

(�;�)




(�;�)

(t) + �

(�;�)

(t);

where c

(�;�)

is a constant factor. This split{up gets unique by minimizing the L

2

{norm of the error

function via the orthogonality principle

D

�
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min

; 


(�;�)

E

= 0:

Since we always presuppose k
k = 1 the minimum error norm is given by
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In order to match the entire STFT{expansion set f


(�;�)

g we integrate k�

(�;�)

min

k

2

over the total range

of � and �:

M(x; 
) =

Z

�

Z

�

k�

(�;�)

min

k

2

d� d�:

Using the STFT{based resolution of the identity (F.2) the �rst integral can be evaluated as follows
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dt dt

0

;

for the second integration we introduce the STFT correlation in the form of (2.46):
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combining these results we have

M(x; 
) = kR

x

k

2

�

D

jEA

x

j

2

; jA




j

2

E

; k
k = 1:

Hence, the window matching via orthogonality principle leads to the following optimization criterion:




opt;2

= arg min




M(x; 
) = arg max




D

jEA

x

j

2

; jA




j

2

E

; k
k = 1: (3.8)

Comparing with (3.6), we see that the result of window matching via orthogonality principle (3.8)

is equivalent to the use of K(�; �) = �(�)�(�) in the de�nition of the o�{diagonal norm M

K

(x; 
)

(3.2). Then however, M

K

(x; 
) is no more an o�|diagonal norm rather it re
ects the norm of the

diagonal itself. Before we discuss the optimum windows in more detail we point out another intuitively

appealing derivation of (3.8).

3.1.2 From Optimum STFT to Optimum Spectrogram

Analogously to the quadratic optimality criterion that leads to the Karhunen{Loeve transform (2.14),

the \sharp o�{diagonal measure" M(x; 
) as de�ned in (3.8) admits an interpretation in terms of

optimum power concentration in the coe�cient distribution. The diagonal of the STFT correlation

equals the physical spectrum ESPEC

(
)

x

(t; f) (see (2.16)):
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(t; f; t; f) = E
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(
)

x

(t; f)
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2

= ESPEC

(
)

x

(t; f): (3.9)

We de�ne a concentration measure of the expected spectrogram analog to the concentration measure

that formally led to the KL transform (see (2.14)) presupposing a process with normalized expected

energy trR

x

= 1

f

M(x; 
) =

Z

t

Z

f

n

ESPEC

(
)

2

x

(t; f)�ESPEC

(
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(t; f)

o

dt df:
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However, since using (3.9) and (2.46) we have:
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f
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and with (3.7)
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E

we can conclude that the maximization of the concentration measure

f

M(x; 
) is equivalent to the

matching via orthogonality principle:

arg max




f

M(x; 
) = arg min




M(x; 
):

Hence we see that matching the STFT expansion set via the orthogonality principle is equivalent to

optimizing the concentration of the expected spectrogram. We remind the reader that this is just what

we expect by generalizing the concept of the Fourier and KL transform: statistically optimum linear

representation leads to a corresponding statistically optimum quadratic representation.

Moreover, whenever both EA

x

(�; �) and A




(�; �) are smooth and well{concentrated about the

origin (which is usually satis�ed in cases of practical interest) then

�

�

�
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)
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is a well{

behaved function. Then it is clear that maximizing the diagonal
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must diminish the

o�{diagonal spread of

�
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)

�
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2

since the total integral is independent w. r. t. a variation

of 
(t) on the unit sphere (see (3.4)).

3.2 Discussion of the Matched STFT Window

3.2.1 Twofold Ambiguity

In the window optimization criterion (3.6) the ambiguity functions of the window and of the process

both appear magnitude squared, a fact that entails a twofold ambiguity.

First, the optimum window is not uniquely determined. Rather there exists at least

1

a whole

Weyl{Heisenberg family of optimum windows, 


(�;�)

opt

(t), since the cost function of the window opti-

mization criterion is invariant w.r.t. a time{frequency shift of the window. However, in most practical

applications a window function that is not spectrally and temporally centered about zero is not ac-

ceptable as it falsi�es the (absolute) time{frequency localization of the signal. Fortunately, in the

iterative numerical solution of the window optimization [206] it su�ces to start with a time{frequency

centered window in order to prevent convergence to \time{frequency{biased" solutions.

Second, there exist processes with di�erent correlation functions but identical optimum window. A

trivial example is a Weyl{Heisenberg family of processes x

(�;�)

(t). This ambiguity makes our window

optimization theory even more useful since it allows to match the window to the incomplete a priori

knowledge of a correlation kernel. It should be stressed that such incomplete a priori knowledge

prevents the application of the KL transform.

1

Apart from other potential, less obvious ambiguities of the optimum window.
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3.2.2 Choice of Smoothing Kernel

The smoothing kernel K(�; �) has been introduced for the design of the penalty (weight) function

in the continuous o�{diagonal norm (3.2). It is obvious that with increasing spread of K(�; �) and

decreasing spread of EA

x

(�; �) the choice of the smoothing kernel has considerable in
uence on the

result. For the limit case of stationary white noise the window optimization theory is no more valid

(it is restricted to trace class correlation kernels), it is however illuminating to look at this case in an

approximate way:

jEA

x

(�; �)j

2

� �(�)�(�) =) 


opt

� arg max




D

jA




j

2

;K

E

; k
k = 1:

We see that for approximate stationary white processes the optimum window tends to depend entirely

on the choice of the smoothing kernel. This is not astonishing if one is aware of the fact that in

this case the KL basis itself is highly ambiguous, since any orthonormal basis leads to uncorrelated

coe�cients. It is only our desire to penalize temporal and spectral correlation of the STFT coe�cients

that determines the optimum window. Moreover, in Section 3.1.1 we have seen that even the ideally

concentrated kernel K(�; �) = �(�)�(�) makes sense although it is not admissible in the sense of

measuring the o�{diagonal spread of the STFT correlation

2

.

Hence, in practice one could completely abandon the smoothing kernel apart from two exceptions:

(i) When there is a need to penalize temporal and spectral correlation in an unequal manner, this can be

expressed by the choice of a radially non{symmetric K(�; �). (ii) In practice, the window optimization

will be based on an estimate of EA

x

(�; �). Whenever this estimate appears to be highly oscillatory

then a slight smoothing may help to improve convergence in the iterative numerical optimization.

3.2.3 Residual Correlation

Given the optimized window we now ask about the residual global correlation of the STFT coe�cients.

Using (3.8) and (2.52) one can write the global correlation in the following form (for simplicity we

assume negligible smoothing, i.e. K(�; �) � �(�)�(�)):
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d� d�:

It is obvious that the optimum window should have an ambiguity function that is close to one in that

area of the (�; �){plane where jEA

x

(�; �)j > 0. Restricting the discussion to typical time{frequency{

localized window functions, the radar uncertainty principle for normalized signals,
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�
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(�; �)j

2

d� d� = 1 and jA




(0; 0)j

2

= 1 � jA




(�; �)j

2

;

shows that the underspread/overspread classi�cation plays an important role as explained in what

follows.

Impact of Underspread/Overspread Classi�cation. A usual window is a well time{frequency{

localized signal with an ambiguity function that can be coarsely approximated by a rectangular indi-

cator function with area one. Then it is clear that for an underspread process the optimum window

indeed achieves

jA




(�; �)j � 1 where jEA

x

(�; �)j > 0;

i.e., we thus have small global correlation. On the other hand, for an overspread process, we cannot

�nd a window that achieves such a perfect matching since due to the radar uncertainty principle the

area with jA




(�; �)j � 1 cannot be larger than one.

2

In a discrete setting this problem disappears, since the delta distributions carry over to Kronecker functions and the

ideally concentrated kernel establishes a valid o�{diagonal norm.
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3.3 Time{Varying Spectral Estimation and the Spectrogram

In Section 3.1.1 we have seen that the optimum STFT of a nonstationary process establishes an

expected spectrogram (physical spectrum) that is optimum in the sense of concentration. The nat-

ural question is to ask about the relation of this optimum physical spectrum to classical window{

independent de�nitions of a time{varying spectrum. One may suppose that the optimally concen-

trated spectrogram is in some sense also optimum as an estimator of the generalized Wigner{Ville

spectrum. In this section we study various window optimization criteria which aim at minimum bias

of the spectrogram as an estimator of the generalized Wigner{Ville spectrum.

The above{discussed \nonstationary Wiener{Khintchine relation"
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x
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Z
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f
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(t; f)e

�j2�(�t��f)

dtdf = F

t!�

F

�1

f!�

n

EW

(�)

x

(t; f)

o

;

provides the starting point in investigating this issue. Observe that due to the �{dependence of

the expected generalized Wigner distribution we can a priori exclude a simple relation to the �{

independent STFT window optimization criterion. However, we hope that in cases of practical interest

all window optimization criteria lead to essentially the same optimum.

3.3.1 Bias of Spectrogram

The expected spectrogram is a smoothed version of the expected generalized Wigner distribution

(GWD), where the smoothing kernel is the GWD of the analysis window 
(t):

ESPEC

(
)

x

(t; f) = EW

(�)

x

(t; f) � �W

(�)�




(�t;�f):

Considering the expected spectrogram as an estimate of the expected GWD, the bias clearly depends

on the choice of the analysis window

3

:

B

(
)

SPEC

(t; f)

def

= EW

(�)

x

(t; f)�ESPEC

(
)

x

(t; f):

For a general nonstationary process it is hard to set up a useful criterion for the choice of 
(t).

However, by considering processes with compactly supported EAF we are able to obtain concrete

window optimization criteria.

We henceforth presuppose a priori knowledge of the 0=1{valued characteristic function �

x

(�; �) of

the support of EA

(�)

x

(�; �), de�ned by

EA

(�)

x

(�; �) = EA

(�)

x

(�; �)�

x

(�; �) and

Z

�

Z

�

�

x

(�; �)d� d� ! min : (3.10)

The minimum area side constraint is intuitively clear but requires further theoretical reasoning. In

Appendix D, it is shown that the indicator function of the support of EA

x

(�; �) establishes the

minimum variance unbiased estimator of the Wigner{Ville spectrum. This fact gives the motivation

to take the smallest indicator function among those which contain the support of EA

x

(�; �).

For the following derivations we mention two properties of the indicator function �

x

(�; �): (i) it

does not depend on � as the magnitude of EA

x

(�; �) is �{invariant, (ii) one has

�

x

(�; �) = �

x

(��;��);

since

jEA

(�)

x

(�; �)j = jEA

(�)

x

(��;��)j:

3

For simplicity, we here do not consider more general estimators of the Wigner{Ville spectrum and refer to Appendix

D. There, it turns out that the window matching is indeed a mere bias problem, i.e. it su�ces to compare the expected

spectrogram with the expected generalized Wigner distribution. The spectogram with its speci�c structure does not allow

a bias versus variance trading, for a typical underspread process it is usually a suboptimal estimator. The natural step

to multi{window estimators will be discussed in Section 3.5.
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3.3.2 Minimum Bias Window

Based on (3.10) one can easily obtain a tight bound on the bias magnitude via triangle and Schwarz

inequality:
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=
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x
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=
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n
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x

(�; �)�EA
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x

(�; �)A

(�)�
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o

e

�j2�(f��t�)

d� d�

�

�

�

�

�

�

�

Z

�

Z

�

�

�

�
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(�)

x

(�; �)

�

�

�

�

�

�

�

x

(�; �)�A

(�)�




(�; �)

�

�

�

d� d�

� kR

x

k










�

x

�A

(�)













: (3.11)

Minimization of the upper bound leads to a classical signal synthesis problem [371, 339],




opt;3

= arg min













�

x

�A

(�)













2

= arg max




D

�

x

; A

(�)




E

subject to k
k

2

= 1;

(3.12)

i.e., one has to �nd that normalized signal 
(t) whose ambiguity function comes closest to a given target

function. (This optimization problem is slightly less complicated than (3.5), it leads to a (partial)

eigenvalue problem.) In contrast to the statistically optimal STFT window which is invariant w.r.t. the

choice of �, the minimum bias window will be �{dependent. This fact is not at all astonishing, since




opt;3

minimizes the bias of the spectrogram as an estimator of the �{dependent GWD.

3.3.3 Minimum Bias Window for Real{Part of the GWVS

The generalized Wigner{Ville spectrum (GWVS) is generally complex{valued. By considering the

real{part of the GWVS one has to sacri�ce some of the usually required properties of a time{varying

spectrum [159].

By the employment of (F.21) and (2.61) one can easily parallel the derivation in (3.11):
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=

�
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n
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(t; f)

�

�

�

�

Z

�

Z

�

�

�

�
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(0)

x

(�; �)

�

�

�

�

�

�

�

x

(�; �) cos 2�����A

(0)�




(�; �)

�

�

�

d� d�

� kR

x

k










~�

(�)

x

�A

(0)













: (3.13)

where we have introduced a modi�cation of �

x

(�; �) which is no more an indicator function:

~�

(�)

x

(�; �)

def

= �

x

(�; �) cos 2����:

(For underspread processes this modi�cation will be negligible since cos 2���� � 1 for �

0

�

0

� 1.)

Equation (3.13) results in a slightly modi�ed version of the minimum bias window criterion (3.12): we

have the structurally equivalent optimization problem now expressed as a signal synthesis problem in

terms of the symmetrical ambiguity function A

(0)




(�; �) and an �{dependent target function:




opt;4

= arg max




D

~�

(�)

x

; A

(0)




E

subject to k
k

2

= 1: (3.14)
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3.3.4 Matching via Symbolic Calculus

The physical spectrum can be viewed as a linear time{frequency representation (\Weyl{Heisenberg

symbol") of the correlation operator with the inner product formulation (see (2.19) and (2.20)):

ESPEC

(
)

x

(t; f) =

D

R

x

;P

(t;f)




E

;

where P




denotes the rank{one projection operator onto the analysis window 
. The generalized

Wigner{Ville spectrum establishes a di�erent \Weyl{Heisenberg symbol" of the correlation operator

(see Section 2.5.1):

EW

(�)

x

(t; f) =

D

R

x

;P

(t;f)

(�)

E

;

where the prototype operator P(�) is given by the support constraint of the EAF:

S

(�)

P (�)

(�; �) = �

x

(�; �):

Now it is near at hand to de�ne the optimum spectrogram window by matching the rank{one

prototype operator P




to the general prototype operator P(�). This is indeed just the previously

discussed window 


opt;3

that achieves minimum squared bias:




opt;3

(t) = arg min




kP(�) �P




k

2

= arg max




D

�

x

; A

(�)




E

subject to k
k

2

= 1:

The same reasoning holds when studying the Weyl{Heisenberg expansion via the real{valued gen-

eralized Wigner distribution; the symbolic calculus leads to 


opt;4

. Hence, we see that the abstract

mathematical view leads to formal short{cut derivations.

3.3.5 Approximate Equivalence

The introduced window optimization criteria lead to complicated nonlinear constrained optimization

problems. In practice the numerical expense for the iterative solution may prohibit the application of

the optimum window. This motivates the derivation of approximate window criteria aiming at low{

cost design. Fortunately, we will see that, for underspread processes, all of the previously discussed

window optimization criteria lead to a unique, intuitively appealing window matching rule.

Assume that EA

x

(�; �) is approximately given by an 0=1 valued indicator function �

x

(�; �) with

area much smaller than one:

EA

x

(�; �) = �

x

(�; �) with

Z

�

Z

�

�

x

(�; �)d� d� � 1: (3.15)

We can replace the ambiguity function of a (real{valued) window by its Taylor approximation (see

Section F.0.4):

A

(�)




(�; �) � 1�

1

2�

�

F

2




�

2

+ T

2




�

2

�

; (3.16)

�

�

�

A
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(�; �)
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�
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� 1�

1

�

�

F
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�

2

+ T

2




�

2

�

; (3.17)

where T

2




and F

2




are the temporal and spectral moments of order two de�ned as:

T

2




= 4�

Z

t

t

2

j
(t)j

2

dt;

F

2




= 4�

Z

f

f

2

j�(f)j

2

df;
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where �(f) = (F
) (f). The square{roots of these moments, T




and F




are one natural, mathemat-

ically convenient way to de�ne the duration and bandwidth of a window function. In particular, the

uncertainty principle for 
(t) can be formulated as

T




F




� 1; (3.18)

where equality holds only for the Gaussian signal, which is exactly determined by its second order

moments:

g(t) =

4

q

2F




=T




e

��(F




=T




)t

2

:

More generally, for most applications good windows are always near to a Gaussian function in the

sense that

T




F




� 1;

and the main problem is to determine the optimum duration/bandwidth ratio T




=F




.

To this end, we consider a family of (unit energy) windows 


a

(t) which are dilated versions of a

(energy normalized) reference window 


0

(t):




a

(t) =

p

a


0

(at): (3.19)

The dilation factor a characterizes the duration{bandwidth ratio of the window 


a

(t). With the

well{known facts

T




=

T

0

a

and

F




= aF

0

;

one has

T




F




=

1

a

2

T

0

F

0

;

where T

2

0

and F

2

0

denote the temporal and spectral moments of the reference window 


0

(t) and T

2




and F

2




are the respective moments of the dilated version 


a

(t).

The approximations (3.15), (3.16), and (3.17) provide the basis for replacing the general (multi-

variate) window optimization criteria by the optimization of the single parameter

T




F




.

For the window optimization criteria (3.5) (with negligible smoothing K(�; �) � �(�)�(�)) and

(3.8) we obtain the following approximation (i 2 f1; 2g):

 

T




F




!

opt;i

= arg max

�

T




F




�

D

�

x

; jA




j

2

E

� arg max

�

T




F




�

Z

�

Z

�

�

x

(�; �)

�

T

2




�

2

+ F

2




�

2

�

d� d�:

The �{dependent design criteria (3.12), (3.14) get approximately �{independent since one has:

e

j2�����

� 1;

for �� � 1. (Note that we always consider j�j � 1=2.) Hence, the window optimization criteria (3.12),

(3.14) lead to an �{independent approximate cost function (i 2 f3; 4g):

 

T




F




!

opt;i

= arg max

�

T




F




�

h�

x

; A




i � arg max

�

T




F




�

Z

�

Z

�

�

x

(�; �)

�

T

2




�

2

+ F

2




�

2

�

d� d�:

It is equivalent to the approximate optimization of 


opt;i

; i 2 f1; 2g. That is, with regard to matching

the window to the support of the EAF (in case of incomplete a priori knowledge) we have already

established the approximate equivalence of all previously de�ned window optimization criteria




opt;1

(t) � 


opt;2

(t) � 


opt;3

(t) � 


opt;4

(t) for �

0

�

0

� 1
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In order to obtain a simple window matching rule we restrict the discussion to speci�c shapes of

�

x

(�; �). Both for rectangular shape

�

x

(�; �) = �

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�)

and elliptical symmetry of �

x

(�; �)

�

x

(�; �) =

8

<

:

1;

�

�

�

0

�

2

+

�

�

�

0

�

2

� 1;

0; else

one obtains an intuitively appealing solution for the optimum duration{bandwidth{ratio:
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F




!

opt

=

�

0

�

0

:

(3.20)

Proof: We introduce the following notation:

p

def

=

T




F




; q

def

= T




F




;

m

pq = T

2




;

q

p

= F

2




:

The cost function for rectangular shape of �

x

(�; �) can be evaluated straightforward:

Q

1
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Z

�

0

��

0

Z

�

0
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�

pq�

2

+

q

p

�

2

�

d� d�

=

4

3

�

0

�

0

q

�
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2

0

+

1

p

�

2

0

�

:

For the elliptical case we introduce another short notation:

s(�)

def

= �

0

s

1�

�

�

�

0

�

2

:

The integration shows that the stationary points for rectangular and elliptical shape are identical:

Q

2

(p) =

Z

�

0

��

0

Z

s(�)
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�

pq�

2

+

q

p

�
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�
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Z

�

0

��

0
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s

3
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3

+

q

p

�

2
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!

d�

= 2

Z
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�

3

0

3

�

0
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4
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q

p

�

3

0

�

0
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2

x cos

2

x

!

dx

=

�

4

�

0

�

0

�

p�

2

0

+

1

p

�

2

0

�

:

Here, we have used the substitution:

�

�

0

= sinx;

and the following integrals

Z

�=2

��=2

cos

4

xdx =

3�

8

;
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Z

�=2

��=2

sin

2

x cos

2

xdx =

�

8

:

Di�erentiation of the p{dependent term of the cost functions Q

1

(p); Q

2

(p) leads to

@Q

i

@p

= K

i

�

�

2

0

�

1

p

2

�

2

0

�

; i 2 f1; 2g:

These functions vanish for p =

�

0

�

0

, which �nishes our proof.

The matching rule can be alternatively written in terms of an optimum dilation factor (see (3.19)):

a

opt

=

s

T

0

F

0

�

0

�

0

;

where T

2

0

and F

2

0

are the temporal and spectral moments of the reference window 
(t) (the optimum

window is then given by

p

a

opt


(a

opt

t)). It should be emphasized that according to our fundamental

matching rule the optimum window length depends both on the spectral and temporal variations of

the nonstationary process in a symmetrical manner. This fact is in obvious contradiction with the

usual rule of thumb where one selects the longest possible window such that the windowed part of

the process is approximately stationary. In this rule one completely disregards the spectral variations

(f{dependence of the time{varying spectrum) due to a temporal correlation of the process.

3.3.6 General Elliptical Symmetry and the Gaussian Window

We consider two positive, real{valued 2D functions C

i

(�; �) with elliptical symmetry as de�ned by

C

i

(�; �) =

�

C

i

 

�

�

�

0

�

2

+

�

�

�

0

�

2

!

; i 2 f1; 2g: (3.21)

When we insert such functions into the window optimization criteria (3.8),




opt;2

= arg max




D

C

1

; jA

(�)




j

2

E

subject to k
k = 1;

and (3.12) specialized to � = 0:




opt;3

= arg max




D

C

2

; A

(0)




E

subject to k
k = 1;

then, one can �nd the Gaussian pulse with matched duration as an | at least local | optimum of

the window optimization problem (other local optima are the Hermite functions of order k � 2 which

do not establish a useful STFT window):




opt;2

(t) = 


opt;3

(t)

�

�

�

�=0

=

4

q

2F




=T




e

��(F




=T




)t

2

;

where T

2




and F

2




are the spectral and temporal moments de�ned according to (F.30), (F.31). Here,

the matching rule (3.20) holds exactly and remains valid for the case of overspread processes

T




F




=

�

0

�

0

:

For the case of 


opt;3

with � = 0 this is essentially well{known [371, 339]. However, for the (�{

independent) 


opt;2

we are not aware of existing analytical results. We now show that the Hermite
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functions with matched scale satisfy the necessary condition equation of a Lagrange function corre-

sponding to the constrained optimization problem leading to 


opt;2

.

Proof: The proof is based on the fact that [371, 125] any function C(�; �) 2 L

2

(R

2

) with elliptical

symmetry de�ned as in (3.21) can be expanded into a weighted sum of the (auto{)ambiguity functions

C(�; �) =

1

X

k=1

a

k

A

h

k

(�; �); (3.22)

where h

k

(t) denotes the orthonormal Hermite function of order k with matched duration [1]
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�
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2

: (3.23)

We now perform a variational calculus using the orthonormal basis of the matched Hermite functions.

We can write the prototype signal 
(t) 2 L

2

(R) via the coe�cients g(k) 2 l

2

(Z):


(t) =

1

X

k=1

g(k)h

k

(t) with g(k) = hg; h

k

i :

The squared magnitude of the ambiguity function of g(t) can be written in terms of the cross{ambiguity

functions of the Hermite functions h

k

(t) and the coe�cients g(k)

jA




(�; �)j

2

=

1

X

k=1

1

X

l=1

1

X

k

0

=1

1

X

l

0

=1

g(k)g

�

(l)g(k

0

)g

�

(l

0

)A

h

k

;h

l

(�; �)A

�

h

k

0

;h

l

0

(�; �): (3.24)

The autoambiguity functions A

h

k

;h

k

(�; �)

def

= A

h

k

(�; �) of the Hermite functions are real{valued and

given by Laguerre functions of (�

2

+ �

2

):

A
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(�; �) = e

�(�=2)r

2

L

k

(�r

2

); with r

2
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= �

2

+ �

2

; (3.25)

where L

k

(x) are the Laguerre polynomials [1]:

L
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=

k
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(�x)

l

l!

:

(The general cross{ambiguity functions of the Hermite functions are complex{valued and given by the

generalized Laguerre functions.) We incorporate the side constraint using the method of Lagrange (�

is the Lagrange multiplier)
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; (3.26)

where we have introduced the short notation
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The gradient w.r.t. g

�

(m) is then given by
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We have to show that g(m) = �

mn

gives a stationary point of J , i.e.,

@J

@g

�

(m)

= 0, we have the necessary

condition

Q(n;m; n; n) + Q(n; n;m; n) = ��

mn

:

Since we know that the auto{ambiguity functions are real{valued (see (3.25)) and with

A

x;y

(�; �) = A

�

y;x

(�; �)

we have immediately

Q(n;m; n; n) = Q(n; n;m; n):

Hence, it remains to show that (with arbitrary �)

Q(n;m; n; n) = 2��

mn

:

To see that this is indeed true, we have to analyze Q(n;m; n; n) in more detail, one has (see (3.27))
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Z
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Z

�

C(�; �)A

h

n

;h

m

(�; �)A

h

n

(�; �)d�d�:

The function C(�; �)A

h

n

(�; �) obviously satis�es the elliptical symmetry condition (3.21) such accord-

ing to (3.22) we can expand this function into auto{ambiguity functions:

C(�; �)A

h

n

(�; �) =

1

X

k=1

b

k

A

h

k

(�; �):

Now, by using the well{known fact [371]

hA

x;y

; A

g;h

i = hx; gihh; yi:

we can �nish our proof:
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b

k

hh

k
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n

i hh

m

; h

k

i = b

n

�

mn

:

3.3.7 Discussion

In the previous chapter we have seen that, for underspread processes, the prominent window{independent

de�nitions of a time{varying power spectrum lead to essentially equivalent results (see (2.76)). Con-

cluding this section on time{varying spectrum estimation we can state that for underspread processes

the matched window spectrogram provides a satisfactory estimate of this essentially unique spectrum.

Here, the quali�cation satisfactory is to be understood in a twofold sense:

� First, considering the spectrogram as an estimator of the generalized Wigner distribution, the

bias using the matched window is comparatively small. As a quantitative example consider

a strongly underspread process with rectangular support of the expected ambiguity function.

Here, the maximum bias can be bounded as (see (3.11))
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approximately valid for �

0

�

0

� 1 with the approximations as discussed in Section 3.3.5.
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Proof: We assume a matched, time{bandwidth e�cient window with temporal moment T

2




and

spectral moment F

2




such that
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� 1 and
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=

�
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�
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=
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and F

2




=
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and hence using the Taylor expansion of the ambiguity function:
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:

� Second, presupposing knowledge of a spreading constraint, the physical spectrum (expected

spectogram) is a complete second order statistic of an underspread process (which is not true

for a general nonstationary process). One can switch to a unitary representation of R

x

via a

minimum{norm deconvolution in the (t; f){domain that is equivalent to a stable division in the

(�; �){domain:
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(�; �)j

2
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0; jA




(�; �)j

2

< �:

(3.28)

Note that based on an even only coarsely matched window one has

jA




(�; �)j

2

� � wherever EA

x

(�; �) > 0;

such that the minimum{norm deconvolution (3.28) works without error. This fact is illustrated

in Figure 3.1.

Figure 3.1: Schematic illustration of EA

x

(�; �) and A




(�; �) for matched/mismatched situations: (a)

matched 
, (b) "long" window, (c) "short" window.

As a last remark we remind the reader that this discussion was devoted to a mere consideration

of the bias of spectrogram based spectrum estimation. For strongly underspread processes, variance

reduction in the spectrum estimation leads to multi{window spectrograms as discussed in Section 3.5.
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3.4 Optimal Gabor Expansion

The short{time Fourier transform is a highly redundant signal representation and with our main

objective | obtaining uncorrelated coe�cients | time{frequency discretization comes up naturally.

The Gabor coe�cients can be de�ned by sampling the STFT on a rectangular grid. Hence, we

expect that the statistically optimum STFT window is a good Gabor analysis window too; but in

general it is certainly not the optimum window. Moreover, in the discrete case the analysis window


(t) is not the only free parameter, rather we have to select the sampling periods T , F and the sampling

o�sets �

p

, �

p

. The consideration of the sampling o�sets will be a crucial point in our derivation of the

optimum Gabor expansion. We de�ne the Gabor coe�cients as:

G

(
)

x

(l;m)

def

=

Z

s

x(s)


�

(s� lT + �

p

)e

�j2�(mF��

p

)s

ds; (3.29)

with

k
k = 1; l;m 2 Z; 0 � �

p

< T; 0 � �

p

< F:

The reconstruction is given by

x(t) =

X

l

X

m

G

(
)

x

(l;m)g

(lT;mF )

(t);

where g(t) is the so{called Gabor synthesis window. In this chapter, the focus is on the design of

the analysis window 
(t). The problem of �nding the synthesis window to a given analysis window is

equivalent to the design problem of the analysis window for a given synthesis window. This problem

has attracted considerable interest in recent years [366, 108, 37, 181, 72, 114], we shall return to this

point in the following chapter, Section 4.5.2.

3.4.1 Statistics of the Gabor Expansion

For a zero{mean process x(t) the Gabor coe�cients form a two{dimensional discrete random process

with zero mean

E

n

G

(
)

x

(l;m)

o

= 0 for Efx(t)g = 0:

The correlation of the Gabor coe�cients is a four{dimensional discrete function:
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:

Just as in the STFT case we express the Gabor coe�cient correlation in terms of the ambiguity

function of the window and the expected ambiguity function (EAF) of the process:
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(3.30)

Global Coe�cient Correlation. Similar to (3.2) we measure the global correlation of the Gabor

expansion via an o�{diagonal norm

M

(x;
)

Gabor;S

(T; F; �

p
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�

�

2

S(l � l

0
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0

);

where S(l;m) is a radially nondecreasing weight function with

S(0; 0) = 0; 0 � S(l;m) � 1:
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Based on (3.30) we start with a complicated expression for the global Gabor correlation:
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Using twice Poisson's sum formula:
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(3.31)

The general statistical optimization of the Gabor expansion in the form of

(
; T; F; �

p

; �

p

)

opt

= arg min

(
;T;F;�
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;�

p

)

M

(x;
)

Gabor;S

(T; F; �

p

; �

p

) subject to k
k = 1;

(3.32)

is obviously too complicated for a numerical solution. However, the dependence on the sampling o�sets

is undesirable as in the on{line implementation of the Gabor expansion as a multirate �lter bank it is

not realistic to match the sampling o�sets to the statistics of long natural signals. We thus perform a

usual \randomization" step in order to match the window w.r.t. the whole ensemble of possible Gabor

grid positions.

3.4.2 Random O�set Averaging

We assume that both the time and frequency sampling o�set are uniformly distributed over their

admissible intervals, i.e.,

p
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(�) =

1

T

�

[0;T ]
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(�); (3.33)

where p

�

p

(�) and p

�

p

(�) are the probability density functions of the random variables �

p

and �

p

.

Averaging the global coe�cient correlation w.r.t. the uniformly distributed sampling o�sets yields a

considerable simpli�cation:
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where we have used the fact that
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:

Based on the o�set{averaged version of the global Gabor correlation the remaining optimization

problem can be formulated as:

(
; T; F )
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= arg min
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(3.35)

where we have introduced a weighted{periodized version of the magnitude{squared EAF:
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l
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S(l;m)jEA
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(� � lT; � �mF )j

2

:

Although the optimization problem is now considerably simpli�ed compared to its original setup

(3.32) it is still too complicated for numerical optimization with reasonable expense. As a further step

towards a tractable window optimization problem we restrict ourselves to underspread processes and

we suggest the heuristic choice of a matched grid as discussed in the following section. That is, �rst

we determine T and F and then we optimize 
(t).

3.4.3 Matched Sampling Grid

The choice of an appropriate sampling grid (as determined by T and F ) is basically a two{parameter

problem. In our context, it is best divided into the determination of TF and T=F .

The product TF has to be considered as an a priori side constraint because within the statistical

optimization framework the product should be as large as possible (a higher sampling density always

increases the global correlation), while from a signal reconstruction point of view it should be small

with the upper bound TF = 1 [173]. In order to ful�ll the reconstruction condition we henceforth

assume TF = 1� � with small �.

In the statistical optimization of the Gabor expansion it is the grid ratio T=F which has to be

matched to the process. Given an underspread process with �

0

and �

0

we propose a matched sampling

grid ratio in the form

T

F

=

�

0

�

0

;

(3.36)

but we have no mathematical proof for its optimality. Rather, we provide various heuristic lines of

argumentation that all lead to this speci�c grid ratio (3.36).

Via Frame Theory. In our �rst approach, we start with the matched Gaussian window for STFT{

based representation of an underspread process, as discussed in Section 3.3.6 one has:




opt;STFT

(t) =
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��(F




=T




)t

2

; with

T




F




=

�

0

�

0

; (3.37)

where T

2




,F

2




are the spectral and temporal moments of the Gaussian window and �

0

; �

0

are the

temporal and spectral correlation width of the given underspread process. Now, one way of deriving

the matched grid ratio is to match the Gabor grid to the matched Gaussian window (3.37) via frame

theory.
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A brief review of frame theory can be found in [68, 37]. We here just mention the basic de�nition

of a Weyl{Heisenberg frame.

De�nition. The set 


(lT;mF )

(t) = 
(t � lT )e

j2�mFt

establishes a Weyl{Heisenberg frame whenever

the following inequality holds with 0 < A � B <1,

Akxk

2
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X

m
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�

hx; 


(lT;mF )

i

�

�

�

2

� Bkxk

2

: (3.38)

A and B are called lower and upper frame bound.

A measure for the goodness of the frame is B=A�1, which should be as small as possible. Clearly,

for a given window the frame bounds depend on the choice of the grid ratio. It has been shown both

numerically [68] and theoretically [347, 348] that, given the Gaussian window (3.37), the optimum

grid ratio is given by:

T

F

=

T




F




;

which in turn corroborates our de�nition (3.36).

Via Symbolic Calculus. Another motivation for our matched grid ratio de�nition comes directly

from the stochastic sampling principle as discussed in Section 2.5.2. There, we have shown that

for an underspread process any of the previously discussed classical de�nitions of a time{varying

spectrum (generalized Wigner{Ville, physical and Priestley's evolutionary spectrum) leads to a 2D

lowpass function which is uniquely characterized by its samples on a rectangular grid, with the grid

ratio given by the matching rule (3.36). This clearly shows that the matched grid ratio is a natural,

window{independent quantity of an underspread process.

Via Residual Global Correlation. A more intuitive, but coarser way of reasoning starts with the

assumption of a rectangular support of the EAF with critical spread �

0

�

0

= 1=4. Recall that the

(o�set averaged) global coe�cient correlation is given by the inner product of the \aliased" version of

the EAF and the magnitude squared ambiguity function of the Gabor coe�cients:
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Gabor;S

(T; F ) =
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(T;F )

x
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; jA




j
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�

:

The ambiguity function of a useful window is well concentrated about the origin. With this fact in

mind it is obvious that one has to prefer a grid ratio such that j

b

EA

(T;F )

x

j

2

leaves enough space for

the ambiguity function of the window which in turn causes less global correlation. The situation is

illustrated in Figure 3.2. The area of the largest rectangle that �ts into the centered gap between the

nearest terms of j

b

EA

(T;F )

x

j

2

is given by

A = 4(F � �

0

)(T � �

0

):

It is simple to show that maximizing the area of the gap rectangle leads again to the matched grid

ratio:

�

T

F

�

opt

= arg min

(

T

F

)

A =

�

0

�

0

:

3.4.4 Alternative Derivation for Underspread Processes

It is interesting to note that based upon the three practically reasonable assumptions of :

1. an underspread process,

�

0

�

0

� 1=4;
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Figure 3.2: Schematic illustration of the modi�ed magnitude{squared EAF, j

b

EA

(T;F )

x

(�; �)j

2

of a process

with compactly supported EAF.

2. overcritical sampling, i.e.,

TF � 1;

3. the choice of the matched sampling grid
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�

0

:

one can avoid the o�sets averaging argument (3.33)|(3.35) by recognizing that
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: (3.39)

This is exactly the \anti{aliasing condition" for sampling the generalized Wigner{Ville spectrum

on a grid with constants T and F . Using (3.39) in Equation (3.31) leads exactly to the simpli�ed

expression for the global correlation (3.34) which has been derived in Section 3.4.2 via the o�set

averaging argument.

3.4.5 The Optimum Window

With the choice of a matched sampling grid according to (3.36) the statistical optimization of the

Gabor expansion amounts to the following window optimization problem:
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; subject to k
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However, since

D
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2

E

= 1 for k
k = 1;

4

This is the already published original approach of the author [206].
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one has (we slightly abuse the inner product notation)

arg min
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subject to k
k = 1

which �nally allows to formulate the Gabor analysis window optimization problem as follows:
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(3.40)

In this form the optimization problem is structurally equivalent to the statistical window optimization

for the STFT Eq. (3.6).

3.4.6 Approximate Solutions

One may expect that the optimum STFT window is also a good Gabor analysis window. We show

this fact by approximate reasoning. For the simplicity of the following discussion we assume the sharp

o�{diagonal weight function S(l;m) = 1 � �

l0

�

m0

. Note that for approximately critical sampling

TF = 1 � � and underspread processes, it is the nearest neighbor correlation (R

(x;
)

g

(l;m; l

0

;m

0

) with

jl � l

0

jjm�m

0

j � 1) that will be dominant in the o�{diagonal norm such that a more general weight

function would not make considerable di�erence.

Matched Oversampling. The existence of simple, approximate results for the optimum Gabor

analysis window is restricted to underspread processes with rectangular constraint, i.e.,
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: (3.41)

Under the assumption of \matched oversampling" in the form of

T = 2�

0

; F = 2�

0

; (3.42)

m

T

F

=

�

0

�

0

; TF = 4�

0

�

0

< 1:

one has simply (see Fig. 3.2):
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such that the optimum STFT window is equivalent to the optimum Gabor window:
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We emphasize that this case is theoretically remarkable but it does not give any reason to prefer the

speci�c product TF = 4�

0

�

0

. In fact, it is only for the critical spread �

0

�

0

= 1=4 that the grid of (3.42)
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is identical with the critical grid of the stochastic sampling principle. From our original motivation of

obtaining uncorrelated coe�cients the product TF should be kept as large as possible.

Note that once we omit the assumption of \matched oversampling" we still have the fact that due

to (3.41) one has
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such that the largest rectangle that �ts into the centered gap of
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(see Figure 3.2, p. 54). The optimum window should have a maximum part of volume of jA




(�; �)j

2

in such a centered rectangle. This allows to conclude that just as in the case of the STFT a coarse

matching of the window in the sense of keeping a constant shape and optimizing the scale (as discussed

in Section 3.3.5) may again be de�ned by

T




F




=

�

0
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;

where T

2




and F

2




are the temporal and spectral moments of the window.

Approximate Matching Via Symbolic Calculus. Similar to the STFT window optimization, an

abstract mathematical view gives an approximate low{cost window design criterion.

The stochastic sampling principle (as discussed in Section 2.5.2) leads to a discrete Weyl{Heisenberg

expansion of a correlation operator

R

x

=

X

l

X

m

EW

(�)

x

(lT;mF )P

(lT;mF )

(�); (3.43)

where the prototype operator is uniquely de�ned for the choice of the critical sampling grid T =

1

2�

0

,F =

1

2�

0

. On the other hand, the Karhunen{Loeve based operator decomposition is given by

R

x

=

X

k

�

k

P

u

k

; (3.44)

where P

u

k

is the rank{one projection operator onto the KL basis signals u

k

(t).

Now, an ideally decorrelating Gabor expansion must be equivalent to the KL expansion such that

one has a structured version of (3.44) in the form of:

R

x

?

=

X

l

X

m

E

�

�

�

�

G

(
)

x

(l;m)

�

�

�

2

�

P

(lT;mF )




; (3.45)

where the expectation of the magnitude squared Gabor coe�cients would play the role of the KL

eigenvalues.

The structural equivalence of (3.43) and (3.45) suggests a heuristic matching by selecting that 


whose rank{one projection is closest to the prototype operator. This is just the already mentioned

�{dependent window optimization criterion 


opt;2

de�ned as:




opt;2

= arg min




kP(�) �P




k

2

= arg max




D

�

x

; A

(�)




E

subject to k
k

2

= 1:



3.5 MULTIWINDOW EXPANSIONS 57

3.4.7 Discussion

The adaptation of the Gabor expansion to the second order statistic of a nonstationary process shows

quite similar aspects as discussed for the corresponding STFT problem.

We have a twofold ambiguity, both the window and the process appear in the form of their

magnitude{squared ambiguity function. The ambiguity of the optimum window is only a minor prac-

tical problem while the ambiguity w.r.t. the process is one of the fundamental practical advantages of

the Gabor expansion compared to the KL transform.

To see this, recall that incomplete a priori knowledge prevents the application of the Karhunen{

Loeve transform. But the magnitude{squared EAF of the process (as it appears in the Gabor window

optimization criterion) is in fact an incomplete a priori knowledge of a correlation kernel. Moreover,

even if we assume the mere knowledge of a quasistationarity condition as can be made mathematically

precise by an indicator function of the essential support of EA

x

(�; �), it is natural to replace jEA

x

(�; �)j

by the indicator function �

x

(�; �) in the Gabor window optimization problem. Thus, one can obtain

an approximate diagonalization of any underspread correlation operator via the matched Gabor trans-

form in a case where lack of a priori knowledge completely prevents the use of the Karhunen{Loeve

transform.

It is beyond the scope of this work to give an experimental veri�cation of the notion of a slowly

time{varying process as a model for natural signals. We emphasize however that existing source coding

concepts whether they are linear prediction based or transform coding rely on (or are explained by) the

concept of slow nonstationarity. The present work may thus be seen as a contribution towards a better

understanding of the existing concepts. Clearly, the window optimization theory shows that a precise

description of slow nonstationarity requires knowledge of both the temporal and spectral 
uctuations

present in the process' second order statistic.

3.5 Extension to Matched Multi{Window Expansions

In the statistical optimization of the Gabor expansion we have encountered a deterministic and stochas-

tic (Weyl{Heisenberg) sampling principle:

� The signal can be uniquely reconstructed from the samples of the STFT STFT

(
)

x

(t; f) on a

rectangular grid with

TF < 1:

See [125, 68, 37] for mathematical details about this problem.

� The second order statistic of a process with restricted spreading is characterized by the samples

of the generalized Wigner{Ville spectrum EW

(�)

x

(t; f) on a rectangular lattice with T <

1

2�

0

and

F <

1

2�

0

, thus for an underspread process one has

TF � 1:

The obvious incompatibility of these sampling principles is not only theoretically unsatisfactory

but also a problem in potential applications of time{varying spectra. In a source coding application,

the estimate of the time{varying spectrum should control the bit allocation for the quantization of the

Gabor coe�cients. Another example is nonstationary minimum mean{squared error (Wiener) �ltering,

where it would be natural to use one and the same time{frequency grid for both the estimation and

the �ltering. The most convenient way out of this fundamental incompatibility is the employment of

multi{window expansions as originally introduced by Thompson (for stationary spectrum estimation)

[345].

Given a family of orthonormal analysis windows f


k

(t)g

k=1;:::;N

we de�ne the multi{window Gabor

coe�cients by:

G

x

(l;m; k) =

D

x; 


(lT;mF )

k

E

k = 1; :::; N ; l;m 2 Z;
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where we assume that the expansion set 


(lT;mF )

k

is complete which seems to be possible for

TF � N:

The signal expansion is then based on a corresponding family of synthesis windows fg

k

(t)g

k=1;:::;N

x(t) =

X

l

X

m

N

X

k=1

G

x

(l;m; k)g

(lT;mF )

k

(t):

As to the choice of the analysis window family, it is obvious that a reformulation of the window

matching theory via an o�{diagonal norm minimization is too complicated to lead to practically

useful results. However, by considering the multi{window Gabor coe�cients as point estimates of

the generalized Wigner{Ville spectrum we can obtain a tractable window matching criterion just as

a natural generalization of the STFT/Gabor window matching via \symbolic calculus" (see Sections

3.3.4 and 3.4.6).

One can write

b

EW

(�)

x

(lT;mF ) =

N

X

k=1

�

�

�

G

f


k

g

x

(l;m; k)

�

�

�

2

=










P

(lT;mF )

N

x










2

=

D

P

(lT;mF )

N

x; x

E

;

where P

N

is the rank{N projection onto the span of the windows f


k

g:

(P

N

) (t; s)

def

=

N

X

k=1




k

(t)


�

k

(s):

For the statistical derivation we refer the reader to the Appendix D, we here discuss the matching

via symbolic calculus for underspread processes. Due to the stochastic sampling principle we have a

discrete Weyl{Heisenberg expansion in the form of:

R

x

=

X

l

X

m

EW

(�)

x

(lT;mF )P

(lT;mF )

(�):

It can be shown (Appendix D) that P(�) is essentially the characteristic operator of the MVUB

estimator of EW

(�)

x

(t; f):

b

EW

(�)

x;MV UB

(t; f) =

D

P

(t;f)

(�)x; x

E

:

For the sake of simplicity we narrow the discussion to the case � = 0, here the prototype operator is

self{adjoint and admits the usual eigendecomposition:

P(0) =

1

X

k=1

~

�

k

P

~u

k

;

where P

~u

k

is the rank{one projection onto the eigensignals ~u

k

(t) and

~

�

k

are the eigenvalues. We

furthermore assume that the eigenvalues are arranged in order of non{increasing magnitude. It should

be emphasized that these eigenexpansion is in general completely di�erent from the process' KL

expansion (eigenexpansion of the correlation operator). The optimum window set is given by the �rst

N eigensignals of the prototype operator, which is equivalent to saying that the optimum rank{N

projection estimator of the Wigner{Ville spectrum is based on the following prototype operator:

P

N;opt

=

N

X

k=1

P

~u

k

The rank is selected such that it exceeds the area of the stochastic sampling grid

N �

1

4�

0

�

0

= TF:

We see at least two potential applications for such multi{window methods:
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� Multiwindow Subband Coding of Underspread Processes. The basic structure is similar to the

usual single window transform coder consisting of an analysis step, followed by quantization and

synthesis.

Figure 3.3: Multiwindow realization of subband coder.

The main di�erence lies in the bit allocation which is performed according to the estimate of

the generalized Wigner{Ville spectrum thus on a considerably coarser grid compared to the

usual Gabor based transform coder. This means reduced overhead information in adaptive bit

allocation schemes.

We emphasize that the classical bit allocation scheme (averaging the coe�cient energy over a

number of successive blocks in order to obtain an estimate of the power in each channel) may

be reinterpreted in terms of the proposed multi{window scheme by regarding the rectangular

windows of succesive blocks as a trivial (time{disjoint) family of orthogonal windows.

� Minimum Mean{Squared Error Filtering. The nonstationary MMSE �lter for jointly under-

spread signal and noise leads to an underspread LTV system [199]. As discussed in the next

chapter one can use one and the same set of windows for the estimation and the �ltering. The

�lter itself is a multirate{multiwindow STFT �lter as has been originally proposed by the author

[205] for the realization of underspread �lters.

3.6 Numerical Experiments

In the following numerical experiments we consider the STFT window matching to a given determinis-

tic signal. For comparison we have computed spectrograms using windows with deliberately long/short

duration and a smoothed Wigner distribution based on a radially Gaussian smoothing kernel.

Figure 3.4 considers a combination of three chirp signals with equal chirp rate, but di�erent am-

plitudes, contaminated by white Gaussian noise with resulting signal{to{noise ratio 0dB (the signal

and the noise have equal energy). In this speci�c case, the optimum window is a chirp which is no

traditional window function but matched to the signal at hand. Clearly, this is a best{case example
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for the window matching concept, because the signal consists of time{frequency shifted versions of

a well{concentrated \prototype" signal. However, the experiment demonstrates the noise robustness

of the window matching concept. Note that the window matching is based on the noisy observation

without further a priori knowledge. The noise robustness can be explained by the fact, that the noise

causes merely a (large peak) in the origin of the signal's ambiguity function (see Fig. 3.4(j)) which

does not in
uence the window optimization procedure (any normalized window is equal to one in the

origin of the (�; �){plane).

For the second experiment we have designed a signal that consists of components with quite

di�erent, speci�c time{frequency structure: a frequency modulated signal with parabolic frequency

law, a \long" windowed sinusoid and a \short" Gaussian component centered between the other

components. In contrast to the above considered three{chirp example, the various components of this

signal would certainly require di�erent window durations at di�erent time{frequency localizations. Yet,

the global window optimization procedure leads to a satisfactory compromise between the con
icting

goals of representing the \short" Gaussian, the \long" sinusoidal component and the chirpy parts of

the frequency{modulated signal.

Last, we consider a voiced part of a speech signal. Speech signals are one of the best studied

\natural" signals. They feature quite complicated temporal and spectral structures. We consider a

voiced part of the speech signal which is almost periodic with a small number of dominant spectral

components. The period is called pitch and the spectral components are called formants. One of the

key issues in speech analysis is to keep track of both structures which led to the combined consideration

of \short{window" (wideband) and \long{window"(narrowband) spectrograms. The analyzed signal

includes two pitch periods. Figure 3.6 illustrates the zooming{in procedure that led to the signal at

hand. Using the \long" window blurs the pitch structure, see Fig. 3.6(c), while using the short window

the formant structure gets lost: Fig. 3.6(d). The optimum window spectrogram Fig. 3.6(e) shows a

good compromise between spectral and temporal resolution, it allows to recognize both the temporal

and spectral �ne structure of the speech signal.

3.7 Summary

The short{time Fourier transform is a classical tool for the analysis and processing of signals that

can not be satisfactorily modeled as realizations of wide{sense stationary processes. In this chapter,

we have studied the second{order statistic of the STFT of a nonstationary process. Minimization of

a global STFT correlation measure leads to a window optimization criterion that is approximately

equivalent to window optimization criteria that aim at minimum local/global bias of the spectrogram as

an estimator of the generalized Wigner{Ville spectrum for underspread processes. The STFT window

optimization can be most compactly formulated by maximizing an inner product of the smoothed

expected ambiguity function (EAF) and the ambiguity function of the window:




opt

= arg max




D

jEA

x

j

2

� �K; jA




j

2

E

; k
k = 1;

where the smoothing kernel K(�; �) corresponds to the o�|diagonal penalty function.

The Gabor window optimization can be formulated analogously:




opt;G

= arg min




*
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�

�

�

�

b
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(T;F )

x

(�; �)

�

�

�

�

2

; jA




(�; �)j

2

+

; k
k = 1;

where the smoothing of the STFT criterion is replaced by a weighted periodization (S(l;m) corresponds

to the o�{diagonal penalty function, and T; F are the sampling periods of the Gabor grid):

j

b

EA

(T;F )

x

(�; �)j

2

def

=

X

l

X

m

S(l;m)jEA

x

(� � lT; � �mF )j

2

:
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In the matching of a Gabor expansion we have also considered the freedom in the choice of a (rectan-

gular) sampling grid.

For processes with �nite temporal and spectral correlation,

EA

x

(�; �) = EA

x

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�)

we suggest the use of matched sampling grid whose ratio is given by

T

F

=

�

0

�

0

;

where �

0

; �

0

denote the temporal/spectral correlation width (support constraints of the EAF) of the

process.

We have specialized the above window matching criteria to the one{parameter optimization for

speci�c (rectangular and elliptic) symmetry of the EAF, this leads to the intuitively appealing window

matching rule:

T




F




=

�

0

�

0

;

where T

2




and F

2




are the temporal and spectral moments of the window. Moreover, for underspread

processes (�

0

�

0

� 1) we have seen that the matched window spectrogram achieves a low bias estimate

of the, essentially de�nition{independent, classical time{varying power spectra. Speci�cally, we have

shown that










EW

(�)

x

�ESPEC

(
)

x










2

1

= O

�

(�

0

�

0

)

3

�

:

Deterministic signals are always overspread processes. However, the numerical experiments of this

chapter indicate that the matched window spectrogram gives a highly satisfactory, adaptive time{

frequency representation, with no loss of structural information compared to a Wigner distribution

with supervised smoothing.

We have pointed out the natural extension of the window matching theory to multiwindow methods

for the representation of underspread processes. Loosely speaking, the main motivation for multiwin-

dow methods can be seen in the fact that the time{varying power spectrum of an underspread process

is so smooth that its reproducing kernel has essential rank greater than one. Hence, optimum esti-

mation and representation requires more than one matched window. This idea is consistent with but

more general than classical multiwindow methods for stationary spectral estimation.
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Figure 3.4: TF representations of a \three chirps + noise" signal. (a) signal x(t), (b) windows:
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Figure 3.5: TF representations of \complicated" synthetic signal.
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Figure 3.6: Optimum window spectrogram versus other representations for two pitch periods of a

voiced speech signal. (a) The signal x(t), (b) the considered window functions: 
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(t) � � � \long" win-

dow, 


s

(t) � � � \short" window, 
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Chapter 4

Matched Weyl{Heisenberg Expansions

of LTV Systems

Many aspects of the second order theory of nonstationary processes are mathematically equivalent

to linear system theory. This chapter gives a compact review of the joint time{frequency representa-

tions of linear time{varying (LTV) systems: The generalized spreading function, Zadeh's time{varying

transfer function and the Weyl symbol. Particular emphasis is put on underspread LTV systems and

their analysis and realization via the short{time Fourier transform. The window matching theory as

discussed in the previous chapter is shown to be directly applicable.

We review the practically important concept of wide{sense stationary uncorrelated scattering (WS-

SUS) and show its invariance w.r.t. the parametrization of the generalized Weyl correspondence. Fi-

nally, we discuss a criterion for a transmission pulse with minimum expected distortion for the com-

munication over a Gaussian WSSUS channel. The mathematical structure turns out to be equivalent

to the statistical window matching theory for the STFT/Gabor transform.

4.1 Nonstationary Processes and Linear Systems

In the previous chapter we have matched the STFT (continuous Weyl{Heisenberg signal expansion)

and the Gabor expansion (discrete Weyl{Heisenberg expansion) to the second order statistics of a non-

stationary process. Reduced to a mathematical viewpoint, the key idea was the optimum approximate

diagonalization of a Hilbert{Schmidt operator via Weyl{Heisenberg structured bases. This suggests

to apply the obtained optimization criteria to linear time{varying (LTV) systems that correspond to

a linear operator H by just replacing the correlation operator R

x

by H. There are various di�erent

motivations for this extension of the window matching theory:

� Any nonstationary process x(t) with given second order statistics R

x

can be seen as the output

of a linear time{varying innovations system H excited by white noise

x(t) = (Hn) (t) with R

n

= I:

The (non{unique) innovations system can be characterized by

R

x

= HH

�

: (4.1)

The problem of de�ning an appropriate (time{frequency parametrized) time{varying spectrum

of x(t) as a linear representation of R

x

may accordingly be traced back to the representation of

H via a time{varying transfer function. Mathematically, these concepts are exactly equivalent.

The only di�erence lies in the fact that R

x

is an always positive operator while in practice H is

typically not even normal.

64
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� The short{time Fourier transform is a classical tool for both the representation and �ltering of

nonstationary processes. It may be expected that one and the same window is optimum for both

the representation and the �ltering of a process.

� In the digital communication over a linear channel it is natural to prefer transmission pulses

that come close to eigensignals of the channel. Whenever we consider time and frequency shifted

versions of a prototype transmission pulse (as e.g. in the practically predominant time/frequency

division multiplex systems) this leads back to the matching of a discrete Weyl{Heisenberg set in

the sense of optimum diagonalization of the channel.

Linear time{varying (LTV) systems appear in widespread applications. The choice of an appro-

priate mathematical representation of the system depends on the application. The vast literature on

this topic can be coarsely split up into the predominant model based state space approach and model

independent approaches via kernel representations. The kernel representation of deterministic and

stochastic LTV systems as developed by Zadeh, Kailath, Bello and others [385, 386, 190, 191, 29, 197]

provides the basis for our developments. A compact review of the fundamental theory can be found

in [334].

In a system theoretical context it is usual to call the kernel h(t; s) impulse response

1

(the formal

explanation for this terminology is discussed in Appendix A); the input{output{relation based on

h(t; s) is given by

(Hx) (t) =

Z

s

h(t; s)x(s)ds: (4.3)

The impulse response of an LTV system corresponds to the natural time{domain representation

of the input signal and the output signal. The Fourier dual of the impulse response is the frequency

domain kernel which is known as bifrequency function B

H

(f; s) [385] and is de�ned by

(FHx) (f) =

Z

s

B

H

(f; s)X(s)ds: (4.4)

The bifrequency function is related to the impulse response via a symplectic Fourier transform

B

H

(f; s) =

Z

t

Z

r

h(t; r)e

�j2�(ft�sr)

dt dr: (4.5)

From an operator representation point of view, the impulse response and the bifrequency function

correspond to the temporal and spectral correlation function of a nonstationary process. For the

speci�c classes of linear systems considered in this work the bifrequency function does not play a

speci�cally helpful role. Rather, time{frequency parametrized representations are of key interest.

One can introduce time{frequency parametrization formally as kernels of integral operators essen-

tially analog to (4.3) and (4.4) (by representing either the output or the input signal in a di�erent

domain). However, this point of view neither leads to theoretically useful system classi�cation nor

1

We remind the reader that the term impulse response is not uniquely de�ned in the LTV system literature. In many

publications one considers h

2

(t; � ) = h(t; t � � ) as the impulse response of an LTV system. The input{output relation

then reads

(Hx) (t) =

Z

�

h

2

(t; � )x(t� � )d�; (4.2)

which is advantageous in so far as it provides a split{up in absolute time t and time delay � (causal or memoryless

systems can be characterized merely by the �{support of h

2

(t; � ) which leads to more complicated conditions on h(t; s)).

We use de�nition (4.3) as its corresponds to the usual mathematical de�nition for the kernel of a linear integral operator;

the switch to h

2

(t; � ) is trivial.
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does it suggest practically e�cient methods for system analysis and synthesis. Hence, we introduce

these classical representations in a more physically intuitive way. Moreover, the physical motivation

leads to an operator decomposition point of view in the sense of representing an LTV system by a

weighted, parallel combination of simple, well{understood building blocks. This approach is particu-

larly matched to the analysis and synthesis of underspread systems, to which the original results of

this chapter are devoted.

4.2 Spreading Functions

4.2.1 Time{Frequency Shifting of Signals

A general linear time{varying (LTV) operator potentially causes both time shifts (time delay), i.e.,

(T

�

x) (t) = x(t� �);

and frequency shifts (modulation), i.e.,

(M

�

x) (t) = x(t)e

j2��t

:

Recall that these unitary operators correspond to the amplitude preserving physical e�ects of a time{

varying multipath propagation: time{delay and Doppler{shift

2

.

Whenever a linear operator does not cause any time shift then it is memoryless (linear, frequency{

invariant, brie
y LFI) and whenever there are no potential frequency shifts then the operator is linear,

time{invariant (LTI). The only linear operator that does neither cause time nor frequency shifts is the

identity.

The combination of a time shift � and a frequency shift � leads to a unitary time{frequency shift

operator denoted by S

(�;�)

with the input{output relation given by

�

S

(�;�)

x

�

(t)

def

= (M

�

T

�

x) (t) = x(t� �)e

j2��t

: (4.6)

In the context of this work time and frequency play an equal role which becomes more obvious by

studying the input{output mapping via the spectrogram:

SPEC

(
)

S

(�;�)

x

(t; f) = SPEC

(
)

x

(t� �; f � �); (4.7)

that is, the time{frequency shift corresponds to a translation of the signal's energetic time{frequency

representation.

4.2.2 Asymmetrical Spreading Function

The amount of potential time and frequency shifts caused by an LTV system H can be speci�ed by

the asymmetrical spreading function (also known as delay{Doppler{spread function) [334]

S

(1=2)

H

(�; �)

def

=

Z

t

h(t; t� �)e

�j2��t

dt :

(The meaning of the superscript (1=2) will be clari�ed later.) The asymmetrical spreading function

establishes an in�nitesimal decomposition of H into time{frequency shift operators as de�ned in (4.6):

(Hx) (t) =

Z

�

Z

�

S

(1=2)

H

(�; �)

�

S

(�;�)

x

�

(t) d� d� (4.8)

=

Z

�

Z

�

S

(1=2)

H

(�; �)x(t � �)e

j2��t

d� d�;

2

A general LTV system may cause frequency shift that is not due to a Doppler e�ect. In this work we refer to the

time{varying multipath propagation as an illustrative example with important practical background.
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which is well{de�ned whenever one has (i) x(t) 2 L

2

(R) and (ii) h(t; s) 2 L

2

(R

2

) (see [125, p.79,80])

3

.

Hence, the spreading function admits a point{wise physical interpretation as the path loss and

phase corresponding to a certain time{delay � and Doppler{shift � in a time{varying multipath envi-

ronment [197].

4.2.3 Generalized Spreading Function

The de�nition of a time{frequency shift operator is not unique. Instead of (4.6) one can equally well

put the frequency shift before the time shift which results in a di�erent time{frequency shift operator

that acts as

�

e

S

(�;�)

x

�

(t)

def

= (T

�

M

�

x) (t) = x(t� �)e

j2��(t��)

:

More general time{frequency shift operators with identical time shift and frequency shift can be

obtained by arbitrarily splitting up and combining the time shift and the frequency shift. These time{

frequency shift operators di�er only w.r.t. a time{independent phase factor, and (4.7) holds for any

version of a time{frequency shift operator.

Among this manifold of time{frequency shift operators there is one which is marked out by a

certain symmetry

4

[125],

�

�

S

(�;�)

x

�

(t) = x(t� �)e

j2��t

e

�j2�

��

2

: (4.9)

The corresponding spreading function is

S

(0)

H

(�; �) =

Z

t

h

�

t +

�

2

; t�

�

2

�

e

�j2��t

dt; (4.10)

and will be called symmetrical spreading function. Based on an �{parametrized time{frequency shift

operator with kernel

�

S

(�;�)

(�)

�

(t; s) = �(t � s� �)e

j2��ft+�(��1=2)g

(4.11)

the symmetrical and asymmetrical spreading function can be written in a uni�ed way: the generalized

spreading function is de�ned as

S

(�)

H

(�; �)

def

=

Z

t

h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2��t

dt: (4.12)

A lexical summary of the properties and relations of the generalized spreading function can be found

in the Appendix B, we here mention only facts that are relevant for the speci�c context of this chapter.

System Decomposition. The generalized spreading function allows to characterize the action of a

general LTV system as a superposition of time{frequency shifts (generalization of (4.8)):

H =

Z

�

Z

�

S

(�)

H

(�; �)S

(�;�)

(�) d� d�; (4.13)

where the kernel of S

(�;�)

(�) is de�ned in (4.11).

�{invariance of Magnitude. The magnitude of the generalized spreading function is �{invariant:

�

�

�

S

(�

1

)

H

(�; �)

�

�

�

=

�

�

�

S

(�

2

)

H

(�; �)

�

�

�

;

3

Speci�c systems with a non{square{integrable kernel can still be meaningfully characterized by the spreading function

with the help of distributions, but then validity of (4.8) requires more severe mathematical restrictions on the input signal.

4

This time{frequency shift operator has been originally de�ned by Weyl who was led by group theoretical consider-

ations beyond the scope of this work. We mention this fact since later on one can observe the intimate relationship of

the symmetrical spreading function to the Weyl correspondence.
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this leads to a pleasing �{invariance of many important results.

Time{Frequency Correlation. The generalized spreading function of a correlation operator is

equivalent to the time{frequency correlation function (expected ambiguity function) of the process:

S

(�)

R

x

(�; �) = EA

(�)

x

(�; �):

LTI System. An LTI system with kernel h(t; s) =

�

h(t � s) does not cause any frequency shifts.

Accordingly, the generalized spreading function is ideally concentrated on the time axis:

S

(�)

H

LTI

(�; �) =

�

h(�)�(�):

LFI System. In the dual case of an LFI system with kernel h(t; s) = �(t � s)m(t) the generalized

spreading function is ideally concentrated on the frequency axis

S

(�)

H

LFI

(�; �) = �(�)M(�);

where M(�) is the Fourier transform of the multiplicator function m(t).

Figure 4.1 shows the support of the generalized spreading function for various important classes

of linear systems (underspread systems are the topic of the next section and time{frequency periodic

systems will be discussed in Section 4.5.2).

4.2.4 Underspread Systems

Analog to the underspread/overspread classi�cation of nonstationary processes as introduced in the

previous chapter, we classify linear time{varying systems via a rectangular spreading constraint:

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�); (4.14)

where we call

�

H

def

= 4�

0

�

0

total spread. The total spread determines the conditioning of the least{squares identi�cation problem

and the conceptual value of frequency domain methods in general:

1. The value �

H

= 1 is a threshold for a variance{decreasing least{squares frequency{domain

system identi�cation from input/output observation. A thorough discussion of the system iden-

ti�cation problem is the topic of Appendix E. There it is shown that the variance of the optimum

transfer function estimator is proportional to �

H

. (For �

H

= 1 the variance of the coe�cient

estimate is equal to the SNR ratio of the output signal, i.e., loosely speaking, the system changes

so fast that there is no possibility for averaging without introducing bias.)

2. With regard to the conceptual value of frequency domain methods in general, the threshold

value �

H

= 1 itself establishes a merely formal mathematical side constraint for the quantitative

results on underspread operators discussed in the next chapter. The derivation of the various

approximation bounds often requires �

H

< 1 but in order to have small error terms the spread

must be far below this threshold.

Hence, we de�ne underspread systems analogously to underspread processes by

�

H

� 1:

This asymptotic classi�cation is largely consistent with the original, qualitative de�nition of

underspread LTV systems in [197].
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Figure 4.1: Support of the spreading function for important classes of linear systems: (a) LTI system,

(b) LFI or memoryless system, (c) perfect reconstruction system (with time{delay �

0

), (d) time{

varying tapped delay line, (e) periodically time{varying system, (f) time{frequency periodic system

(e.g. Weyl{Heisenberg frame operator), (g) causal system with �nite memory (limited time{delay),

(h) quasistationary system, (i) underspread system.

Underspread LTV systems play an important role in this work, the practical relevance can be split

up in two basic applications.

From a system analysis point of view we note that the time{varying communication channels as

encountered in mobile communication are in good approximation underspread [269]. Here, the limited

amount of Doppler shift is due to the limited velocity of the mobile radio station, while the maximum

time{delay can be pragmatically motivated by the path loss of the (passive) propagation channel.

Moreover, both from a practical and statistical point of view there is always an appropriate threshold

value beyond which one has to disregard existing (�; �){contributions (point scatterers) of the channel.

We emphasize, that many other practically important linear systems are slowly time{varying with

limited memory (see [356, 240, 81] for control engineering examples). In fact, the key results of

this work establish a theoretical framework which should contribute to a better understanding why

frequency{domain concepts do work for underspread LTV systems although the frequency{domain

theory is matched to time{invariant systems.
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In the synthesis of �lters for the enhancement of speech and audio signals it is natural to require

limited potential time or frequency shift since such signals are characterized by a speci�c temporally

localized frequency content, i.e., a noise reduction should take place in the form of time{frequency{

selective multiplication.

From a purely deterministic signal separation point of view one is led to the concept of \time{

frequency �ltering" which can be performed most naturally by the modi�cation of the signal's time{

frequency representation followed by an appropriate signal synthesis [41]. Whenever the chosen signal

representation is quadratic, the overall �lter is highly nonlinear. It has been shown that such non-

linear analysis{modi�cation{synthesis schemes perform remarkably bad as compared to linear time{

frequency �lters [205, 210]. Linear time{frequency �lters can be de�ned by a time{varying transfer

function (Zadeh's function or Weyl symbol, to be discussed in detail later on in this chapter). However,

qualitatively speaking, such a time{frequency{parametrized transfer function must be smooth in order

to keep the intuitive transfer function interpretation. Now, a canonical way to enforce smoothness of

the system's transfer function is the underspread condition (4.14) (because the transfer function is the

double Fourier transform of the spreading function).

Moreover, we shall see that any underspread system can be realized by multiplicative modi�cation

of the short{time Fourier transform (STFT) provided that one uses an appropriate (even only coarsely

matched) window. This fact is in accordance with the experimental results presented in [210], which

show that the classical STFT{based time{frequency �lters can hardly be outperformed by much more

complicated, o�{line concepts for linear time{frequency �ltering. It should be emphasized that the

STFT is the conceptual basis for many modern multirate signal processing concepts such as modulated

�lter banks, generalized cosine transforms and lapped transforms [357]. From this point of view, the

presented theory may help to improve existing concepts for signal enhancement.

Also from a theoretical point of view underspread systems are worthwhile to study, we here mention

just two important qualitative properties (the mathematical details can be found in the following

chapter, speci�cally Theorem 5.2).

Approximate Commutativity. We call two underspread systems G;H with identical spreading

constraints jointly underspread. Jointly underspread systems commute in an approximate sense:

HG � GH: (4.15)

Approximate Normality. An underspread system is approximately normal:

HH

�

� H

�

H: (4.16)

Approximate normality means that we can write an underspread system with square{integrable im-

pulse response (i.e., an underspread Hilbert{Schmidt operator) as

H �

X

k

�

k

P

u

k

; (4.17)

where P

u

k

is the rank{one projection operator onto the eigensignal u

k

(t). These eigensignals establish

an orthonormal basis for L

2

(R). The combined consideration of the commutativity and normality

allows the conclusion that jointly underspread operators possess a common (approximate) eigenbasis.

This thought leads back to the idea of approximate diagonalization as has been already elaborated for

correlation operators in the previous chapter. A correlation operator is positive and self{adjoint thus

a special case of a normal operator. This means that we can immediately apply our STFT/Gabor

window matching theory to the approximate diagonalization of general underspread HS operators. We

shall return to this point later on in this chapter.
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4.3 Weyl{Heisenberg Symbols of LTV Systems

4.3.1 Transfer Function of LTI System

As discussed at the outset of the foregoing chapter, the Fourier transform is matched to linear time{

invariant (LTI) operators. An LTI system acts as a convolution:

(H

LTI

x) (t) =

Z

�

�

h(�)x(t� �)d�;

the complex sinusoids e

(�)

(t) = e

j2��t

are (generalized) eigensignals,

�

H

LTI

e

(�)

�

(t) = H(�)e

(�)

(t);

where the transfer function H(f) = F

�!f

�

h(�) is the continuous eigenvalue distribution

5

. This transfer

function establishes a powerful concept for the analysis and design of LTI systems. As an example we

mention the cascade composition of LTI systems where we have the well{known correspondence:

H

12

= H

1

H

2

() H

12

(f) = H

1

(f)H

2

(f): (4.18)

We emphasize that LTI systems are in fact a limit case of underspread systems featuring exact com-

mutativity and normality.

The transfer function of an LTI system can be formally written as,

H(f) =

(Hx) (t)

x(t)

�

�

�

�

x(t) = e

j2�ft

: (4.19)

Of course, (4.19) is of limited practical relevance. In particular, the practical approximation of (4.19)

establishes a very poor method for LTI system identi�cation (transfer function measurement). Useful

system identi�cation methods are based on L

2

(R){signals and lead more naturally to a generalization

towards LTV systems. We shall follow this idea in Section 4.4 where we study STFT{based system

analysis.

4.3.2 Zadeh's Time{Varying Transfer Function

In a prominent work [385], Zadeh introduced a time{frequency{parametrized representation of an LTV

system by a direct generalization of (4.19):

Z

H

(t; f)

def

=

(Hx) (t)

x(t)

�

�

�

�

x(t) = e

j2�ft

: (4.20)

In electrical engineering this function is widely known as time{varying transfer function [386, 190, 191,

29, 54, 336, 269]. In the special case of an LTI system, de�nition (4.20) trivially assures consistency

with the usual transfer function

Z

H

LTI

(t; f) = H(f): (4.21)

Zadeh's de�nition leads to an invertible map of the impulse response h(t; s) onto a joint function of

time and frequency

6

Z

H

(t; f) =

Z

�

h(t; t� �)e

�j2�f�

d�: (4.22)

5

Mathematically precise: Approximate point spectrum, see the footnote on p. 1.

6

Formally, Zadeh's time{varying transfer function may also be seen as kernel of an integral operator that maps the

input spectrum onto the output signal (up to a complex factor):

(Hx) (t) =

Z

f

Z

H

(t; f)X(f)e

j2�ft

df:
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However, the terminology of a time{varying \transfer function" is somewhat misleading as this function

satis�es besides (4.20) practically none of the properties of the LTI system's transfer function. For

example, one clearly has for general LTV systems:

Z

H

12

(t; f)

!

6= Z

H

1

(t; f)Z

H

2

(t; f);

because LTV systems do not commute in general.

It is interesting to note that in mathematics (theory of pseudo{di�erential operators) this function

was 15 years later independently introduced as Kohn{Nirenberg symbol of a linear operator [203, 125]

7

.

Recently, it has been recognized by the author [205] that Zadeh's time{varying transfer function

can be related to quadratic time{frequency signal representations, namely the Rihaczek distribution

[302]

R

x

(t; f)

def

=

Z

�

x(t)x

�

(t� �)e

�j2�f�

d�:

in the sense that

hHx; xi = hZ

H

; R

x

i =

Z

t

Z

f

Z

H

(t; f)R

�

x

(t; f)dt df: (4.23)

This means, whenever R

x

(t; f) is concentrated about a certain point (t

0

; f

0

) and x(t) is an eigensignal

of the operator then the values of Zadeh's function in the region about (t

0

; f

0

) give a local information

about the eigenvalue. This is in accordance with the intuitive idea of a time{frequency{parametrized

eigenvalue distribution as a generalization of the frequency{parametrized transfer function of LTI

systems.

However, to have a reliable local eigenvalue interpretation R

x

(t; f) should play the role of a positive

2D test function in (4.23). The quadratic form itself is always a reliable eigenvalue estimator in the

sense that (i) it is real{valued for self{adjoint systems, (ii) for self{adjoint systems one has

8

�

min

� hHx; xi � �

max

for kxk = 1:

Now, whenever the Rihaczek distribution of a (normalized) eigensignal shows oscillatory behavior

(with large imaginary or large negative, real{valued components) (4.23) remains valid but Z

H

(t; f)

can take on values which are far away from the true eigenvalue corresponding to this eigensignal

9

. For

general LTV systems the consequence is that self{adjoint operators do not correspond to real{valued

symbols and L

2

{stable systems may well correspond to unbounded symbols and vice versa [125]. In

particular, one can not study e.g. the (theoretical) L

2

{invertibility of a general LTV system in terms

of the minimum of Zadeh's function, because this minimum does not re
ect the minimum eigenvalue

of the system (which would be true in case of LTI systems).

It is curious that Zadeh's time{varying transfer function appears in all monographs on the mobile

radio channel but to our best knowledge there is no single work about its limitations. We shall however

show that in case of most practical time{varying communication channels one is in the lucky situation

that Zadeh's function can be interpreted as an eigenvalue distribution with reasonable approximation,

i.e., one can study such critical things as e.g. channel invertibility using Z

H

(t; f). Yet, one should be

aware that the frequency domain characterization of general LTV systems is essentially mismatched

and can only be justi�ed by pragmatic reasoning.

Theoretically mismatched concepts always leave some mathematical freedom in the de�nitions.

While this is well{known for the case of stochastic time{varying power spectra (as discussed in the

7

Note, however, that the work of Kohn and Nirenberg goes far beyond Zadeh's results.

8

These facts can be meaningfully generalized to normal non{selfadjoint systems but we concentrate on the self{adjoint

case for simplicity of the discussion.

9

Of course, one could equally well reverse this discussion in the sense of tracing back the inconsistency of the Rihaczek

distribution (as an \energy" distribution) to the problems of Zadeh's function as an operator symbol. Rihaczek itself

did not seem to be aware that his de�nition is Zadeh's function of the rank{one projection operator.
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previous chapter), this essential freedom seems to be widely unknown in the LTV system literature

10

.

Within the general context of this work it is appropriate to discuss a mathematically attractive alter-

native to Zadeh's function: The Weyl symbol.

4.3.3 Weyl Symbol

The Rihaczek distribution has received only moderate attention in the signal processing literature due

to the inherent contradiction of a complex valued \energy" distribution. A more popular alternative

is the Wigner distribution [51, 159] (see Appendix F)

W

x

(t; f)

def

=

Z

�

x

�

t +

�

2

�

x

�

�

t�

�

2

�

e

�j2�f�

d�;

which is real{valued and leads to a much more satisfactory time{frequency representation of chirp

signals compared to the Rihaczek distribution. Reformulation of the quadratic form (4.23) based on

the signal's Wigner distribution leads to the Weyl symbol L

H

(t; f) [369, 277, 125, 327, 205, 293] of an

LTV system:

hHx; xi

!

= hL

H

;W

x

i =

Z

t

Z

f

L

H

(t; f)W

x

(t; f)dt df

+

L

H

(t; f)

def

=

Z

�

h

�

t +

�

2

; t�

�

2

�

e

�j2�f�

d�:

The Wigner{Weyl framework originally appears in the area of phase space methods for quantum

mechanics [369]. The Weyl symbol has also been applied in modern statistics [276] and, even more

recently, the Weyl symbol was introduced in the signal processing literature [327, 205].

The Wigner distribution is somewhat more well{behaved as a time{frequency \energy distribution"

compared to the Rihaczek distribution, a fact that carries over to the properties of the Weyl symbol

in comparison to that of Zadeh's function. The Weyl symbol features two main advantages:

� The Weyl symbol of a self{adjoint operator is real{valued (consistent with the eigenvalue distri-

bution interpretation) while Zadeh's function is generally complex valued. This is mathemati-

cally equivalent to the fact that one can compute the Weyl symbol of the adjoint operator by a

simple conjugation:

L

H

�

(t; f) = L

�

H

(t; f): (4.24)

This property was one of the key ingredients in our proof of the asymptotic equivalence of the

classical time{varying power spectra for underspread processes (see Section 2.5.3).

� The celebrated performance of the Wigner distribution for chirp signals may be traced back to

the mathematical issue of unitary equivalence: That is, shearing or rotating a Wigner distribution

leads to a valid Wigner distribution of an (appropriately) modi�ed signal, a fact that does not

hold true for the Rihaczek distribution. For the associated system representations this carries

over to the following facts: When the Weyl symbol of a system H gets subject to a symplectic

10

To be historically correct we should mention what Bello [29] has called frequency{dependent modulation function:

L

(�1=2)

H

(t; f) = F

�!f

h (t+ �; t)

(the superscript shall be explained in the following section). However, to the author's best knowledge this function never

appeared elsewhere in the LTV system literature.



74 MATCHED WH EXPANSIONS OF LTV SYSTEMS

coordinate transform then one obtains a unitarily equivalent system

e

H (the singular/eigenvalues

remain unchanged while the singular/eigensignals undergo a canonical unitary transform) [125]:

L

e

H

(t; f) = L

H

(at + bf; ct + df); with

�

�

�

�

�

a b

c d

�

�

�

�

�

= 1:

+

e

H = UHU

�

; with UU

�

= U

�

U = I:

This does not hold true for Zadeh's function. For example, rotating Zadeh's function leads to a

modi�cation of the system's singular values.

Note, that the eigenvalue distribution interpretation of a time{varying transfer function would

indeed require the general type of unitary equivalence as satis�ed by the Weyl symbol. Hence,

loosely speaking, whenever an LTV system features \chirpy" eigensignals then one should prefer

the Weyl symbol compared to Zadeh's function [205]. However, in this work we shall put the

focus on underspread systems in the sense of (4.14) where Zadeh's function and the Weyl symbol

are essentially equivalent.

We henceforth treat Zadeh's function and the Weyl symbol in parallel via the introduction of the

generalized Weyl symbol [205].

4.3.4 Generalized Weyl Symbol

The generalized Weyl symbol (GWS) is a unitary representation of Hilbert{Schmidt (HS) operators

11

de�ned as follows:

L

(�)

H

(t; f)

def

=

Z

�

h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2�f�

d�;

it gives the Weyl symbol for � = 0 [369, 125], Zadeh's time{varying transfer function (Kohn{Nirenberg

symbol) for � = 1=2 [385, 125], and Bello's \frequency{dependent modulation function" for � = �1=2

[29]. In the choice of the �{parametrization we were led by the de�nition of the generalized Wigner

distribution [176]

W

(�)

x

(t; f)

def

=

Z

�

x

�

t +

�

1

2

� �

�

�

�

x

�

�

t�

�

1

2

+ �

�

�

�

e

�j2�f�

d�:

Using the generalized Wigner distribution we have a GWS{based time{frequency formulation of the

quadratic form:

hHx; xi =

D

L

(�)

H

;W

(�)

x

E

: (4.25)

We have already used the GWS in the foregoing chapter in our study of the generalized Wigner

distribution of stochastic processes. One has the formal equivalence:

L

(�)

R

x

(t; f) = E

n

W

(�)

x

(t; f)

o

;

i.e., the GWS of a correlation operator is equivalent to the expected generalized Wigner distribution.

A lexical summary of the GWS properties can be found in the Appendix C, we here just mention

only a some formulas relevant for the context of STFT{based system analysis and synthesis.

Interrelation with Spreading Function. The GWS is the (symplectic) Fourier transform of the

generalized spreading function (as de�ned in (4.12))

L

(�)

H

(t; f) =

Z

�

Z

�

S

(�)

H

(�; �)e

j2�(�t��f)

d� d� = F

�1

�!t

F

�!f

n

S

(�)

H

(�; �)

o

: (4.26)

11

Hilbert{Schmidt operators correspond to LTV systems with square integrable kernel (impulse response.)
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Hence, whenever the generalized spreading function is essentially concentrated about the origin, the

GWS is a two{dimensional lowpass function.

LTI System. For a linear time{invariant system with convolution type kernel h(t; s) =

�

h(t � s) the

GWS gives the usual transfer function (Fourier transform of the operator's impulse response):

L

(�)

H

(t; f) = H(f) =

�

F

�

h

�

(f):

LFI System. In the dual case of a linear, frequency{invariant system (e.g. a linear modulator) with

distribution type impulse response h(t; s) = �(t� s)m(t) the GWS is frequency independent:

L

(�)

H

(t; f) = m(t):

Normal HS Operator. The GWS of an LTV system which corresponds to a normal HS operator,

i.e., HH

�

= H

�

H is given by an eigenvalue{weighted sum of the generalized Wigner distribution of

the eigensignals:

L

(�)

H

(t; f) =

1

X

k=1

�

k

W

(�)

u

k

(t; f): (4.27)

This formula obviously shows how the intuitive interpretation of the GWS can be traced back to

the interpretation of the generalized Wigner distribution. Without anticipation of later developments

in this work, one can already expect troubles for those systems whose eigensignals show bad time{

frequency localization, i.e., cover more than one \Heisenberg cell" (see the more detailed discussion in

Section 2.3.2, p. 14).

Time{Frequency Shift{Covariance. In Section 2.3.1 we have de�ned time{frequency shifting of

a system (linear operator) by

12

H

(�;�)

= S

(�;�)

HS

(�;�)�

;

where S

(�;�)

is an arbitrary version of a time{frequency shift operator as de�ned in (4.11). Such

a time{frequency shift leaves the eigenvalues of H unchanged while the new eigensignals are just

time{frequency shifted versions of the original ones, i.e., given

(Hx) (t) = �

0

x(t)

it follows that

�

H

(�;�)

x

(�;�)

�

(t) = �

0

x

(�;�)

(t);

with

x

(�;�)

(t) = x(t� �)e

j2��t

:

Now, one of the fundamental properties of the GWS is its invariance w.r.t. a time{frequency shift

of systems, or to put it the other way around: a translation of the GWS leads to a corresponding

time{frequency shift of the eigensignals but leaves the eigenvalues of a normal HS operator unchanged:

L

(�)

H

(�;�)

(t; f) = L

(�)

H

(t� �; f � �): (4.28)

This property is fundamental for the interpretation and theoretical manipulation of the GWS, specif-

ically in the formulation of the stochastic WSSUS class. The time{frequency shift{covariance gives a

12

Our notation is somewhat ambiguous, since the superscript (�; �) has a completely di�erent meaning depending on

the label of the operator. However, since we shall never need a time{frequency shift of the time{frequency shift operator

this ambiguity does not cause further complications.
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canonical example of unitary equivalent operators whose symbols are interrelated by a simple coordi-

nate transform of the time{frequency plane (namely a translation). Along with the discussion of the

Weyl symbol (� = 0) we have already mentioned that other more general forms of unitary equivalence

exist, which correspond to more general coordinate transforms of the symbol. However, the general

GWS family satis�es only the shift{covariance (4.28). The following two properties are immediate

consequences of this covariance.

Periodically Time{Varying Systems. A periodically time{varying linear system commutes with

time{shifts that are multiples of its time{period T [62], i.e., given

x

(lT )

(t) = x(t� lT ); l 2 Z;

one has

�

Hx

(lT )

�

(t) = (Hx) (t + lT ):

Using our notation, this de�nition can be compactly formulated as:

HS

(lT;0)

= S

(lT;0)

H:

This is equivalent to the following requirement for the kernel of H:

h(t; s) = h(t + lT; s + lT ):

The GWS of such an operator is periodic w.r.t. time:

L

(�)

H

(t; f) = L

(�)

H

(t + lT; f); (4.29)

for � = 1=2 this result is well{known [54].

Time{Frequency Periodic Systems. Time{frequency periodic systems arise in the context of the

Gabor expansion as Weyl{Heisenberg frame operator and (near{perfect reconstruction) DFT �lter

banks. Such systems correspond to operators which satisfy a canonical commutation relation:

HS

(lT;mF )

= S

(lT;mF )

H; l;m 2 Z;

where T is the time period and F is the frequency period of a time{frequency sampling grid. One can

show that such operators establish an algebra

13

.

The commutation relation is equivalent to the following kernel requirement:

h(t; s) = h(t + lT; s + lT )e

j2�mF (t�s)

:

We call such systems time{frequency periodic, because the GWS is doubly periodic:

L

(�)

H

(t; f) = L

(�)

H

(t + lT; f + mF ): (4.30)

The generalized Weyl correspondence is matched to the algebra of time{frequency periodic operators

in the sense of a Gelfand transform, because given two time{frequency periodic operators H,G one

has validity of the perfect symbol calculus for integer oversampling:

L

(�)

H

(t; f)L

(�)

G

(t; f) = L

(�)

HG

(t; f);

for j�j =

1

2

and TF =

1

n

; n 2 N:

13

Algebra implies in particular that this class of operators is closed w.r.t. composition or inversion. Time{frequency

periodic operators are \big" in the sense of being non{Hilbert{Schmidt (thus non{compact), which means that they

basically fall out of our usual domain of the Weyl correspondence. A rigorous theory without the intuitively appealing

but slightly dangerous use of the generalized Weyl correspondence can be found in [181].



4.3 WH SYMBOLS 77

It is curious that in this speci�c respect the Weyl symbol (� = 0) is inferior to the Kohn{Nirenberg

symbol in the sense that the perfect symbol calculus holds only for TF =

1

2n

. (This means in

particular that the Weyl symbol does not allow to study the speci�cally interesting case of critical

sampling, TF = 1.)

The Weyl{Heisenberg frame operator is de�ned as (
(t) is the prototype):

M




def

=

X

m

X

l

S

(lT;mF )

P




S

(lT;mF )�

:

where P




is the rank{one projection onto the prototype (Gabor analysis window):

(P




) (t; s) = 
(t)


�

(s):

Validity of the symbol calculus suggests that the GWS indeed establishes the spectral representation

of the (non{compact) frame operator M




. Indeed, for TF = 1 (critical sampling) the GWS with

j�j = 1=2 is essentially equivalent to the magnitude{squared Zak transform of the prototype 
:

L

(1=2)

M




(t; f) = L

(�1=2)

M




(t; f) = T jZ




(t; f)j

2

;

where the Zak transform is de�ned as [179, 37]

Z




(t; f) =

X

l


(t + lT )e

�j2�flT

:

For integer oversampling and multiwindowing one ends up with formal short{cut derivations of well{

known results of Gabor theory [181, 393, 158] that support the fact that the GWS with j�j = 1=2

establishes the generalized eigenvalue distribution of the (self{adjoint, non{compact) frame operator

of integer{oversampled, generalized Weyl{Heisenberg frames. More details about this aspect of the

generalized Weyl correspondence will appear elsewhere [113].

Continuous Weyl{Heisenberg Expansion. In the engineering applications of the GWS, namely

as LTV system's transfer function or time{varying stochastic signal spectrum we tend to interpret

the symbol as time{frequency{selective multiplier. Clearly, this interpretation is in con
ict with

Heisenberg uncertainty, nevertheless one can formally write any HS operator in the form of what we

call a continuous Weyl{Heisenberg expansion:

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�)dt df; (4.31)

where P(�) is an �{dependent in�nitesimal prototype operator whose symbol is a 2D delta distribu-

tion:

L

(�)

P (�)

(t; f) = �(t)�(f):

A more detailed discussion of P(�) was the topic of Section 2.3.2. One may view P(�) as \ideal time{

frequency localizator". However, the severe �{dependence re
ects how the di�erent correspondence

rules set up pragmatic de�nitions which, of course, can not overcome Heisenberg's uncertainty.

We can formally write the GWS in the form of an operator inner product:

L

(�)

H

(t; f) =

D

H;P

(t;f)

(�)

E

:

Note that the generalized Wigner distribution can be written as a quadratic form based on just the

same prototype operator:

W

(�)

x

(t; f) =

D

P

(t;f)

(�)x; x

E

;
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studying the action ofP(�) is an easy way to explain the well{known, undesired behavior (\interference

terms", [159]) of generalized Wigner distributions for natural signals.

The continuous Weyl{Heisenberg expansion (4.31) is the dual of the above discussed (�; �){

parametrized expansion as induced by the generalized spreading function (4.13) :

H =

Z

�

Z

�

S

(�)

H

(�; �)S

(�;�)

(�) d� d�:

However, in contrast to the time{frequency shift operator S

(�;�)

(�), which admits a clear physical

interpretation, the prototype operator P(�) is not at all an ideally time{frequency{selective projection

as our GWS interpretation would require. In the following section we will see that this lack of a useful

point{wise interpretation can be removed in the case of underspread systems.

4.3.5 Properties of the GWS of Underspread Systems

The action of a general LTV system may be divided in time{frequency shifting and time{frequency

selective multiplication, but it is only the latter e�ect that we take into account in our interpretation of

the GWS. Hence, it is near at hand to restrict the discussion to systems which do not cause considerable

time{frequency shifts. We have already speci�ed this class via the underspread limitation (4.14). In

fact, one can show that the desirable properties of the GWS get approximately valid with decreasing

spreading product �

0

�

0

14

.

More mathematical details can be found in the following chapter, now we mention just the most

important properties of the GWS of underspread systems.

Discrete Weyl{Heisenberg Expansion. The Fourier relationship between the generalized spread-

ing function and the GWS (see (4.26)) allows to apply the sampling theorem for 2D functions to the

GWS of an underspread system. Accordingly, the GWS is uniquely characterized by its samples on

a rectangular grid with time{period T = 1=2�

0

and frequency{period F = 1=2�

0

. The reconstruction

equation of the GWS corresponds to what we call a discrete Weyl{Heisenberg expansion of the system:

H =

X

l

X

m

L

(�)

H

(lT;mF )P

(lT;mF )

(�): (4.32)

where P(�) is an �{dependent prototype operator with sinc{type GWS (more details will be discussed

in Chapter 5, Section 5.2). Note that for the special case � = 1=2 this essential result was originally

published by Kailath in [190]. Such a discrete Weyl{Heisenberg expansion leads immediately to a

canonical realization of underspread LTV systems via multirate �lter banks. We shall return to this

point when we study the STFT{based system realization.

Approximate �{invariance. The GWS of an underspread system is approximately �{invariant (for

a proof see the following chapter, Theorem 5.5):

L

(�

1

)

H

(t; f) � L

(�

2

)

H

(t; f): (4.33)

Hence, when we treat underspread LTV systems, the choice of a particular � is a matter of conve-

nience. In a discrete implementation the choice � = 1=2 is preferable as it carries over to a discrete

implementation.

Approximate Multiplicative Calculus. The GWS of the product of two jointly underspread

operators is approximately equal to the product of the GWS of the operators:

14

In this respect, the case � = 0 is marked out by the fact that one could admit more general de�nitions of under-

spread systems, i.e., de�ned by a sheared or rotated version of the rectangular constraint in (4.14). However, to the

author's knowledge the doubly symmetric underspread support (4.14) covers the practically predominant applications:

Optimum �ltering of natural signals and the slowly time|varying systems with limited memory. Moreover, in case of

\sheared/rotated underspread" systems one can easily return to the usual underspread theory by putting a \down{chirp"

and \up{chirp" multiplication/convolution before and after the system to be analyzed or synthesized.
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L

(�)

H

2

H

1

(t; f) � L

(�)

H

1

(t; f)L

(�)

H

2

(t; f);

(4.34)

where the approximation gets better with decreasing spreading product �

0

�

0

(for details see Chapter

5, Theorem 5.1). Approximate validity of the symbol calculus (4.34) is of fundamental importance

for the approximate equalization and inversion of underspread LTV systems and for the estimation of

underspread processes. It shows that it is the class of underspread systems where one can use Zadeh's

time{varying transfer function in a way just as the conventional transfer function of LTI systems. As

an example consider a (zero{mean) underspread process x(t) applied to an underspread LTV system

H. The correlation operators of the input and output process are related as

R

Hx

= HR

x

H

�

: (4.35)

Using the (4.33), (4.34) for � = 0 and

L

(�)

R

x

(t; f) = EW

(�)

x

(t; f);

L

(0)

H

�

(t; f) = L

(0)�

H

(t; f);

allows to reformulate the operator relation (4.35) via time{frequency representations:

EW

(�)

Hx

(t; f) �

�

�

�

L

(�)

H

(t; f)

�

�

�

2

EW

(�)

x

(t; f); (4.36)

where the L

2

=L

1

{error of this approximation decreases with decreasing total spread of the process

and system, respectively.

Note that (4.36) is the time{frequency{parametrized generalization of the well{known relation for

stationary environments:

S

Hx

(f) = jH(f)j

2

S

x

(f);

where S

x

(f) is the power spectrum of a stationary input process, H(f) is the transfer function of the

LTI system, and S

Hx

(f) is the power spectrum of the stationary output process.

Another important example is approximate operator inversion. The identity operator is \totally

underspread",

S

(�)

I

(�; �) = �(�)�(�) () L

(�)

I

(t; f) = 1;

it is the neutral element of any class of jointly underspread operators. Hence, we can expect that the

following approximation holds

L

(�)

H

�1

(t; f) �

1

L

(�)

H

(t; f)

;

valid in a domain where the inverse symbol is bounded. Note, however, that the true inverse operator

of an underspread operator may typically not be underspread.

Approximate Eigenpairs. Any time{frequency shifted version of an appropriately time{frequency

localized prototype signal 
(t) is an approximate eigensignal of an underspread system H and the

generalized Weyl symbol L

(�)

H

(t; f) determines the corresponding eigenvalue:

HS

(t;f)


 � L

(�)

H

(t; f)S

(t;f)


;

where S

(t;f)

is an arbitrarily de�ned time{frequency shift operator (any member of the family S

(t;f)

(�),

see (4.11)).
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Appropriate localization of a prototype signal 
(t) can be speci�ed, e.g., by our standard window

matching rule:

T




F




=

�

0

�

0

;

where T




is the temporal duration (square root of the second order temporal moment), F




denotes

the bandwidth (precisely the square{root of the second order spectral moment), and �

0

; �

0

de�ned

the system's spreading constraint as de�ned by (4.14). (The mathematical details can be found in

Chapter 5, Theorem 5.6.)

Supremum Norm. We have mentioned that the GWS of a general LTV system does not faithfully

re
ect the maximum/minimum eigenvalues/singular values of a system, i.e., a positive operator may

correspond to a negative symbol and vice versa

15

. However, the GWS of an underspread system gives

a reliable information on the maximum singular value, one has

�

�

�

sup jL

(�)

H

(t; f)j

2

� kHk

2

1

�

�

�

< �

 

1

X

k=0

�

k

!

2

;

where � is a constant that gets smaller with decreasing total spread of the system and �

k

are the

operator's singular values (for the proof of this statement we refer to Section 5.4.6).

4.4 STFT Based System Analysis

In the previous chapter, Section 3.3 we have seen that the short{time Fourier transform (STFT)

STFT

(
)

x

(t; f)

def

=

Z

t

0

x(t

0

)


�

(t

0

� t)e

�j2�ft

0

dt

0

=

D

x; 


(t;f)

E

leads to a satisfactory second order representation of underspread processes (in terms of the spectro-

gram) provided that one adapts the window length to the spreading constraint of the process. In view

of the mathematical equivalence of second{order process and LTV system representation, we expect

that these results carry over to STFT{based system analysis and design. Recall that we always assume

a normalized analysis window:

k
k

2

=

Z

t

j
(t)j

2

dt = 1:

We start with the formal introduction of an STFT kernel k

(H;
)

STFT

(t; f; t

0

; f

0

) which de�nes a linear

integral operator that maps the STFT of the input signal onto the STFT of the output signal:

STFT

(
)

Hx

(t; f) =

Z

t

0

Z

f

0

k

(H;
)

STFT

(t; f; t

0

; f

0

)STFT

(
)

x

(t

0

; f

0

) dt

0

df

0

;

15

The operator norm kHk

1

is de�ned as

kHk

1

def

= sup

�

kHxk

kxk

: x 6= 0

�

with kxk

2

= hx; xi:

In a system theoretic context such operators are called L

2

{stable (�nite energy input leads always to �nite energy

output) whenever kHk

1

is bounded. It is important to note that we deviate from the usual notation in the mathematics

literature, where \our" kHk

1

is the standard operator norm, while the Hilbert{Schmidt norm is often denoted by kHk

HS

or by jjjHjjj. Both norms are compatible with a signal's L

2

{norm in the sense that

kHxk � kHk

1

kxk � kHk

HS

kxk:
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the STFT kernel is thus given by:

k

(H;
)

STFT

(t; f; t

0

; f

0

)

def

=

D

H


(t

0

;f

0

)

; 


(t;f)

E

=

Z

t

1

Z

t

2

h(t

1

; t

2

)
(t

2

� t

0

)


�

(t

1

� t)e

�j2�(t

1

f�t

2

f

0

)

dt

1

dt

2

;

which is equivalent to computing the STFT of the output signal when 


(t

0

;f

0

)

is the input signal:

k

(H;
)

STFT

(t; f; t

0

; f

0

) = STFT

(
)

H


(t

0

;f

0

)

(t; f):

By setting H = R

x

we have the formal equivalence with the correlation of the STFT of a zero{mean

nonstationary process as discussed in the foregoing chapter (see (2.44)):

k

(R

x

;
)

STFT

=

D

R

x




(t

0

;f

0

)

; 


(t;f)

E

= R

(x;
)

STFT

(t; f; t

0

; f

0

):

This formal equivalence allows to utilize (2.46) by replacing EA

x

(�; �) by S

(1=2)

H

(�; �) such that we

have a useful expression for the STFT kernel in terms of the system's spreading function and the

ambiguity function of the window:

k

(H;
)

STFT

(t; f; t

0

; f

0

) =

Z

�

Z

�

S

(1=2)

H

(�; �)A

(1=2)




(t� t

0

� �; f � f

0

� �)e

j2�[(��f)(t

0

+�)+f

0

t

0

]

d� d�:

(4.37)

4.4.1 Short{Time Transfer Function

The STFT is a highly redundant, unique 2D linear signal representation, hence the STFT kernel

establishes a redundant, unique 4D linear representation of LTV systems. In practice this means

that the representation is too detailed to be useful. In fact, when we study time{frequency{selective

multiplication it is only the diagonal of the STFT{kernel we are basically interested in. (The o�{

diagonal contributions essentially characterize the time{frequency displacement e�ects.) We call this

diagonal short{time transfer function, it is de�ned as

T

(
)

H

(t; f) = k

(H;
)

STFT

(t; f; t; f) =

D

H


(t;f)

; 


(t;f)

E

=

D

H;P

(t;f)




E

; (4.38)

i.e., in practice, this means applying a time{frequency shifted version of a prototype signal at the input

and matched �ltering of the output signal (P




is the rank{one projection onto the window function)

16

.

Of course, the short{time transfer function does not give a necessarily unique representation of

a general LTV system. We can easily trace back this issue to the theory of underspread processes

using the fact that the short{time transfer function of a correlation operator is just the expected

spectrogram of the underlying process x(t) (see (3.9)):

T

(
)

R

x

(t; f) = ESPEC

(
)

x

(t; f): (4.39)

Before we reformulate the window matching criterion we mention a few other properties of the

short{time transfer function (by the way of replacing R

x

by H we can exploit all STFT{relevant

results of the foregoing chapters).

Relation to the Generalized Weyl Symbol. The short{time transfer function of a system can

be written as smoothed version of the system's generalized Weyl symbol (GWS) where the smoothing

16

In the mathematical physics literature an operator quantization of the form

�(�) =




H


(�)

; 


(�)

�

is called Berezin symbol [274] or also lower symbol [305], where 


(�)

denotes the action of a certain group (or projective

representation of a group) of unitary operators acting on 
. Hence, from this point of view one may call T

(
)

H

(t; f)

\Weyl{Heisenberg{Berezin" symbol of H.
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kernel is the generalized Wigner distribution of the window (analogously to the relation between the

physical spectrum and the Wigner{Ville spectrum (2.33)):

T

(
)

H

(t; f) = L

(�)

H

(t; f) � �W

(�)�




(�t;�f): (4.40)

Hence, the short{time transfer function is a natural, simple estimator of an LTV system's time{varying

transfer function Moreover, (4.40) immediately shows that T

(
)

H

(t; f) is an alternative, nonunitary

Weyl{Heisenberg symbol of a linear system as it satis�es the shift{covariance property: A shift of the

symbol corresponds to a unitarily equivalent system:

T

(
)

H

(�;�)

(t; f) = T

(
)

H

(t� �; f � �):

Normal HS operator. For a normal Hilbert{Schmidt operator the short{time transfer function

leads to an eigenvalue{weighted sum of the spectrograms of the eigensignals (see (2.24)):

T

(
)

H

(t; f) =

1

X

k=1

�

k

SPEC

(
)

u

k

(t; f): (4.41)

Self{Adjoint Operator. It is a well{known fact of the theory of self{adjoint operators that the

range interval of the quadratic form for a normalized input signal is equal to the eigenvalue range

interval [252]:

�

min

� hHx; xi � �

max

for kxk = 1: (4.42)

Hence, from the de�nition of the short{time transfer function (4.38) we can immediately conclude

that for a self{adjoint operator, the range of the short{time transfer function is bounded by the

maximum/minimum eigenvalues:

�

min

� T

(
)

H

(t; f) � �

max

: (4.43)

It depends on the operator and the window whether equality actually takes place for some (t; f). More

generally, one can show that (for bounded operators on L

2

(R)):










T

(
)

H










1

� kHk

1

;

which motivates to call T

(
)

H

(t; f) lower symbol of H[305].

LTI System. The short{time transfer function of an LTI system leads to a smoothed version of the

LTI systems's true transfer function and the smoothing kernel is the spectrum of the window (see

(2.17)):

T

(
)

H

LTI

(t; f) = H(f) � j�(�f)j

2

;

Note that i) this relation is well{known and underlies most practical LTI transfer function measurement

systems

17

, ii) in contrast to its time{varying generalization (4.40) this estimate can be made arbitrarily

precise by increasing the window length.

17

With regard to correlative methods (based on pseudorandom excitation) it should be noted that, in essence, com-

puting the usual cross{correlation estimates is equivalent to evaluating a quadratic form as underlies the de�nition of

the short{time transfer function. In fact, the quadratic form is the fundamental mathematical eigenvalue estimator such

that any sound (non{parametric) transfer function estimator must implicitly or explicitly evaluate such a quadratic form.
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4.4.2 Window Matching for STFT{based System Analysis

What is a good window for the above discussed STFT{based system analysis? Recall that the short{

time transfer function does not uniquely characterize a general LTV system. Hence, we de�ne a good

window by the requirement of getting as much information about the system as possible via the short{

time transfer function. However, since the short{time transfer function is the diagonal of the STFT

kernel this requirement is essentially equal to minimizing an o�{diagonal norm of the STFT kernel.

Analog to the statistical STFT{window optimization of the foregoing chapter we de�ne the optimum

window by




opt

= arg min




Z

t

Z

f

Z

�

Z

�

�

�

�

K

(H;
)

STFT

(t; f; t� �; f � �)

�

�

�

2

(1�W (�; �)) dt df d� d�;

where W (�; �) is a radially non{increasing smoothing kernel (see (3.3)). Utilizing the results of the fore-

going chapter, a compact form is obtained by replacing the expected ambiguity function EA

(�)

x

(�; �)

in (3.6) by the spreading function of the operator, S

(�)

H

(�; �) (we suppress the � superscript since all

terms are �{invariant)




opt

= arg max




D

jS

H

j

2

� �W; jA




j

2

E

; k
k = 1: (4.44)

However, it is often the nature of system analysis that we do not a priori know the kernel. But what

we usually have is some a priori knowledge on the support of the spreading function. In this case one

can apply our matching rule (3.20)

T




F




=

�

0

�

0

;

where T

2




, F

2




are the temporal and spectral moments of a good time{frequency localized window

function, and �

0

, �

0

, characterize the a priori knowledge about the rectangular spreading constraint

of the system. The choice of such a matched window function assures the following advantages:

� The short{time transfer function leads to a unique representation of an underspread LTV system.

This fact is best explained by switching from the (t; f){domain convolution relation (4.40) to

the corresponding (�; �){domain multiplication:

T

(
)

H

(t; f) = L

(�)

H

(t; f) � �W

(�)�




(�t;�f)

m

�

F

t!�

F

�1

f!�

T

(
)

H

�

(�; �) = S

(�)

H

(�; �)A

(�)�




(�; �): (4.45)

Since S

(�)

H

(�; �) is a unique system representation, it su�ces to study whether one can recover

S

(�)

H

(�; �) from given T

(
)

H

(t; f). In fact, whenever the essential support of A

(�)




(�; �) covers

the support of S

(�)

H

(�; �), then S

(�)

H

(�; �) is well{de�ned via a minimum{norm deconvolution

(equivalent to the inversion of the map from the expected spectrogram to the Wigner{Ville

spectrum as discussed in Section 3.3):

S

(�)

H

(�; �) =

8

>

>

>

<

>

>

>

:

�

F

t!�

F

�1

f!�

T

(
)

H

�

(�; �)

A

(�)�




(�; �)

; jA




(�; �)j > �;

0; jA




(�; �)j � �;

(4.46)

where � has to be selected such that the �{support A




(�; �) covers the (a priori known) support

of S

H

(�; �).
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� For underspread systems, the bias of the short{time transfer function as an estimator of the

GWS is comparatively small, since one has A

(�)




(�; �) � 1 within the support of S

(�)

H

(�; �) in

(4.45). (For a more detailed discussion see Section 3.3.7, where the analogous problem of the

bias of spectrogram based Wigner{Ville spectrum estimation is considered.)

For strongly underspread systems one may well replace the GWS by the short{time transfer

functions in the approximate symbol calculus:

T

(
)

H

1

H

2

(t; f) � T

(
)

H

1

(t; f)T

(
)

H

2

(t; f):

However, we conjecture that the approximation error will be generally larger than in the GWS

based symbol calculus. For example, in case of LTI systems where one has a GWS{based perfect

symbol calculus, it is easy to see that the symbol calculus based on the short{time transfer

function leads to a (window{dependent) error.

� Used as a prototype signal, the matched window and any time{frequency shifted version thereof

is an approximate eigensignal of the system, we shall follow this idea more speci�cally in our

study of WSSUS channels.

In this section we have seen that the STFT is an appropriate tool for the analysis of underspread

LTV systems. It may be expected that the STFT is also useful for the realization of underspread

systems. This is the topic of the following section.

4.5 STFT{based Synthesis of LTV Systems

Multiplicative modi�cation of the short{time Fourier transform (STFT) is a well{known concept for

the design of linear time{varying �lters [283]. The basic idea is to insert a modi�cation step between

STFT analysis and synthesis. The overall system consists of three parts:

1. STFT analysis with analysis window 
(t),

STFT

(
)

x

(t; f) =

Z

s

x(s)


�

(s� t)e

�j2�fs

ds;

2. Multiplicative modi�cation of the STFT outcome STFT

(
)

x

(t; f) by a time{frequency{parametrized

multiplier function M(t; f),

^

STFT

(
)

x

(t; f) = M(t; f)STFT

(
)

x

(t; f);

3. STFT synthesis applied to the modi�ed STFT outcome

^

STFT

(
)

x

(t; f) using a so{called synthesis

window g(t); this yields the output signal (H

STFT

x) (t)

(H

STFT

x) (t) =

Z

t

0

Z

f

0

^

STFT

(
)

x

(t

0

; f

0

)g(t� t

0

)e

j2�f

0

t

dt

0

df

0

:

This concept is illustrated in Figure 4.2.

For simplicity of the discussion we shall concentrate on the choice g(t) = 
(t) (equal analysis and

synthesis window).

Our usual terminology for the time{frequency shifting of operators provides a compact notation:

recall that STFT synthesis may be viewed as a continuous Weyl{Heisenberg resolution of the identity

I =

Z

t

Z

f

P

(t;f)




dt df;
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Figure 4.2: On the synthesis of linear time{varying systems via multiplicative modi�cation of the

short{time Fourier transform.

the STFT analysis{modi�cation{synthesis scheme is a perturbation of this resolution of the identity:

H

STFT

=

Z

t

Z

f

M(t; f) P

(t;f)




dt df: (4.47)

In view of the structural parallelism with the GWS{based Weyl{Heisenberg expansion (4.31):

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�)dt df;

we interpret M(t; f) as another Weyl{Heisenberg symbol of a linear operator H

STFT

(see for the

parallelism to the generalized Weyl symbol). We shall call this symbol \STFT multiplier". Clearly, the

map M(t; f) 7! H

STFT

is not unitary just as the map underlying the \short{time transfer function".

We have a simple convolution relation with the GWS:

L

(�)

H

STFT

(t; f) = M(t; f) � �W

(�)




(t; f); (4.48)

which shows how the spectral and temporal width of the window blur the spectral and temporal

selectivity of the multiplier function M(t; f). Recall that this is analogous to the case of STFT{based

system analysis via the short{time transfer function:

T

(
)

H

(t; f) = L

(�)

H

(t; f) � �W

(�)�




(�t;�f):

The map M(t; f) 7! H

STFT

is an ongoing area of research in mathematics [261, 305], where operators

of the form H

STFT

are called Toeplitz and M(t; f) is usually referred to as upper symbol. We here

just discuss the issue of minimum/maximum eigenvalues (L

2

{stability and L

2

{invertibility) as this is

of obvious interest in the design of LTV �lters (and it clari�es the mathematical terminology). In this

respect, the disadvantage of the non{unitarity of M(t; f) is somewhat compensated by the fact that

M(t; f) reliably re
ects the minimum/maximum eigenvalue. Based on the spectrogram of an input

signal,

SPEC

(
)

x

(t; f) =

�

�

�

STFT

(
)

x

(t; f)

�

�

�

2

=

D

P

(t;f)




x; x

E

and (4.47), one can easily derive a time{frequency parametrized formulation of the quadratic form:

hH

STFT

x; xi =

D

M;SPEC

(
)

x

E

: (4.49)

Real{Valued Multiplier. Eq. (4.49) immediately shows that real{valued multipliers always yield

self{adjoint operators. For normalized x(t) the range interval of the quadratic form is equal to the

eigenvalue range interval (see (4.43)). Recognizing the positivity and boundedness of the spectrogram

of a normalized window,

0 � SPEC

(
)

x

(t; f) � 1 for kxk = 1;
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one has

inf M(t; f) � �

k

� supM(t; f); (4.50)

hence, the term upper symbol in the mathematics literature. We furthermore mention without proof

that this property can be essentially generalized to complex{valued multipliers in so far as bounded

multipliers correspond to bounded symbols. Hence, the map M(t; f) 7! H

STFT

preserves boundedness

and positivity. This is in striking contrast to the GWS where a bounded symbol may correspond to

an unbounded operator and positive symbols can lead to inde�nite operators.

Spreading Function of STFT{based Systems. The convolution relation of the Weyl{Heisenberg

symbols, L

(�)

H

(t; f) and M(t; f), (4.48) correspond to multiplicative relations in the (�; �){domain

S

(�)

H

STFT

(�; �) = m(�; �)A

(�)




(�; �); (4.51)

where m(�; �) denotes the symplectic Fourier transform of M(t; f),

m(�; �)

def

= F

t!�

F

�1

f!�

fM(t; f)g: (4.52)

and A

(�)




(�; �) is the generalized ambiguity function of the window 
(t). As expected, for the practically

reasonable assumptions of

1. a usual (good time{frequency localized) window function,

2. a well{behaved (non{oscillating) multiplier M(t; f),

multiplicative modi�cation of the STFT leads always to systems with restricted time{frequency shift-

ing, i.e., STFT based systems are always approximately underspread .

In the following section we shall see that the converse statement is also true: any system with

well{restricted time{frequency shifting is realizable by multiplicative STFT{modi�cation based on an

appropriate window function 
(t) and bounded multiplier function M(t; f).

4.5.1 Window Matching for STFT{based Systems

For a given spreading constraint (�

0

,�

0

) we have the matching requirement that any operator satisfying

this constraint be realizable via STFT analysis{modi�cation{synthesis using the matched window.

Realizability means that one can �nd a bounded multiplier function by a regular deconvolution of

(4.48) corresponding to a regular division in the (�; �){domain:

m(�; �) =

8

>

>

>

<

>

>

>

:

S

(�)

H

STFT

(�; �)

A

(�)




(�; �)

;

�

�

�

A

(�)




(�; �)

�

�

�

� �;

0;

�

�

�

A

(�)




(�; �)

�

�

�

< �;

(4.53)

where � is a small constant that would depend on the numerical implementation. Just as for the

STFT{based system analysis and nonstationary process representation the matching is obtained by

adapting the essential support of the window's ambiguity function such that it covers the (a priori

knowledge of) the essential support of the system's spreading function (see Fig. 3.1, Section 3.3). Such

an adaption can be obtained by our usual matching rule:

T




F




=

�

0

�

0

;

where now �

0

; �

0

characterize the support of S

H

(�; �) and T




; F




are the duration and bandwidth of

the window.
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4.5.2 Weyl{Heisenberg Frames as STFT{Multipliers

We now show how the above discussed STFT �lter theory turns out useful for the context of the

Gabor expansion (which in a discrete setting corresponds to DFT{type �lterbanks [38]).

Recall that the frame operator of a Weyl{Heisenberg frame can be written as a sum of the rank{one

projection operator onto the prototype, shifted on the grid:

M




=

X

m

X

l

P

(lT;mF )




:

When we compare this formula with the continuous Weyl{Heisenberg expansion of STFT{multiplication

systems (4.47), it is easy to see that M




can be interpreted as an STFT{multiplication system with

the following distribution{valued multiplier:

M

(T;F )

(t; f) =

X

l

X

m

�(t � lT )�(f �mF ): (4.54)

Moreover, we have shown that the spreading function of STFT{multiplication systems is given by

S

(�)

H

STFT

(�; �) = m(�; �)A

(�)




(�; �);

where m(�; �) is the symplectic 2D Fourier transform of the multiplier. In the speci�c case of the

\delta grid multiplier" (4.54) we obtain a 2D delta pulse train on a \dual"grid:

m

(T;F )

(�; �) =

1

TF

X

l

X

m

�

�

� �

l

F

�

�

�

� �

m

T

�

; (4.55)

which allows to conclude immediately that the spreading function of the Weyl{Heisenberg frame

operator is given by:

S

(�)

M




(�; �) =

1

TF

X

l

X

m

�

�

� �

l

F

�

�

�

� �

m

T

�

A

(�)




�

l

F

;

m

T

�

;

an essentially well{known result (\Janssen's representation" of the frame operateror [181]), revisited

in an alternative, time{frequency symmetric way.

Studying the perfect reconstruction problem for the Gabor expansion means that we start with

de�ning (
(t) is the analysis, g(t) is the synthesis prototype)

M

g;


def

=

X

l

X

m

P

(lT;mF )

g;


; with (P

g;


) (t; s) = g(t)


�

(s); (4.56)

which should be equal to the identity operator on L

2

(R). Now, based on the above discussed STFT{

multiplier trick we get a compact proof of the famous Wexler{Raz result:

M

g;


= I

m

L

(�)

M

g;


(t; f) � 1

m

S

(�)

M

g;


(�; �) = �(�)�(�)

m

A

(�)

g;


�

l

F

;

m

T

�

= TF�

l0

�

m0

;

i.e., perfect reconstruction requires to solve for a biorthogonality condition on a dual grid. This method

of studying Weyl{Heisenberg frames allows more than just a formal rederivation of existing results,

namely it leads to straightforward important structural generalizations:
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� One can generalize the rectangular sampling grid to arbitrary non{separable sampling grid (for

example Quincunx{type) in (4.54) and by exploiting classical results from 2D sampling theory

[88] we obtain a dual grid and a generalized version of the Wexler{Raz result. This provides

a simple proof of a conjecture in a recent (so far unpublished work) of Zibulski and Zeevi

[393] concerning the structure of the dual frame of Quincunx{type generalized Weyl{Heisenberg

frames.

It should be emphasized, that regarding the underspread operator diagonalization problems

considered in this work, the Quincunx{type time{frequency sampling pattern is particularly

promising whenever the actual support of the operator's spreading function tends to an elliptical

shape rather than a rectangular.

� One can replace the rank{one prototype operator P

g;


in (4.56) by a general rank{N operator

and generalize the Wexler{Raz result to the case of multiwindowing.

� Our method of derivation uses only time{frequency{separable Fourier transforms which means

that it allows for a trivial generalization to arbitrary signal dimensions (which is not possible

for the usual Zak transform based derivations), when we try to cover the case of non{separable

prototypes.

4.5.3 Discussion

By way of summarizing the discussion on STFT{based system analysis and design we state the fol-

lowing facts:

� The use of the STFT leads to non{unitary Weyl{Heisenberg symbols of linear systems: From

an analysis point of view to the \short{time transfer function" T

(
)

H

(t; f), from a synthesis point

of view to the \STFT{multiplier" M(t; f). These representations have the same basic inter-

pretation as the GWS, i.e., viewing the system in the sense of a time{frequency{parametrized

multiplier (time{varying transfer function).

� Both the \short{time transfer function" and the \STFT{multiplier" are interrelated to the GWS

via a convolution, where the generalized Wigner distribution of the window acts as smoothing

kernel:

L

(�)

H

STFT

(t; f) = M(t; f) � �W

(�)




(t; f);

T

(
)

H

(t; f) = L

(�)

H

(t; f) � �W

(�)�




(�t;�f):

This convolution relation shows (i) the shift{covariance and (ii) the non{unitarity of both sym-

bols. The non{unitarity has the following practical consequences: The \short{time transfer

function" T

(
)

H

(t; f) does not uniquely characterize a general LTV system; it is not possible to

assign an \STFT{multiplier" M(t; f) to a general LTV system such that this system can be

realized by multiplicative modi�cation of the STFT using M(t; f) (because the deconvolution is

ill{conditioned whenever the window's ambiguity function vanishes within the essential support

of the system's spreading function). However, in contrast to the unitary Weyl correspondence,

the mapsH 7! T

(
)

H

(t; f) and M(t; f) 7! H preserve the eigenvalue range of self{adjoint operators

in the sense that:

�

min

� T

(
)

H

(t; f) � �

max

;

inf M(t; f) � �

k

� supM(t; f);

i.e., T

(
)

H

(t; f) and M(t; f) are \lower" and \upper" Weyl{Heisenberg symbols of H. These prop-

erties are of fundamental relevance for the numerical stability of STFT{based system analysis

and design.
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� When we restrict ourselves to underspread LTV systems and assume a matched window both the

\short{time transfer function" T

(
)

H

(t; f) and the \STFT{multiplier" m(t; f) provide a unique

representation of underspread LTV systems (since restricting the maps H 7! T

(
)

H

(t; f) and

M(t; f) 7! H onto the subspace of underspread HS operators and to the subspace of accordingly

bandlimited multipliers lead to invertible one{to{one mappings corresponding to minimum norm

deconvolutions as considered in (4.46) and (4.53)).

� STFT{based linear �ltering is the classical \mother concept" for any DFT{based perfect re-

construction systems (modulated �lter banks, FFT{based transmultiplexers). The discussion in

Section (4.5.2) has shown that the presented STFT{�lter theory establish a conceptual basis for

a more 
exible design of DFT{based perfect reconstruction systems.

4.6 Signal Design for WSSUS Channels

Stochastic LTV systems provide an adequate model for various time{varying communication chan-

nels. Such a stochastic model is the so{called wide{sense stationary uncorrelated scattering (WSSUS)

channel, originally de�ned by Bello [29], widely accepted for important multipath wave propagation

channels such as the troposcatter channel, underwater acoustic channel, and (with some amount of

controversy) the mobile radio channel [197, 188, 162, 116]. The WSSUS concept is also adopted in

radar theory, namely, as a stochastic method for target identi�cation [355].

Both historically and in the modern literature one can distinguish two alternative motivations for

the WSSUS setup.

A physical way of reasoning which, in essence, assumes a large number of statistically independent

point scatterers that cause (i) a (narrowband) Doppler e�ect, (ii) a time{delay, (iii) a path loss (scalar

multiplication by a factor smaller than one), and (iv) an unimodular phase factor (which, as a random

variable, is assumed to be uniformly distributed). For more details about this line of argumentation see

[197]. The physical motivation is intuitively appealing for the troposcatter channel and the underwater

acoustic channel but questionable for the mobile radio scenario.

A pragmatic formulation of the incomplete a priori knowledge about an LTV system, with the usual

motivation of most statistical concepts: If we are to match a system to unknown physical situations

we assume that this situations are random and we match our system to the statistics. Now, in case of

nonparametric LTV system theory we are confronted with 2D random processes which, in principle,

lead to 4D second order statistics. However, it is not realistic to work with 4D functions. Hence, it is

necessary to assume some additional stationarity constraint such that these 4D statistics essentially

degenerate to 2D functions. The only nonparametric system representation where 2D stationarity is

not totally unphysical is the transfer function, but stationarity of the (time{varying) transfer function

is exactly the key feature of the WSSUS concept.

In the original WSSUS model the system representations are considered as 2D stochastic processes

with speci�c second order statistic. In the (most natural) spreading domain the WSSUS channel

is characterized by i) being zero{mean, ii) showing uncorrelated amplitudes of the time{frequency

shifts

18

:

E

n

S

(1=2)

H

(�; �)

o

= 0; (4.57)

E

n

S

(1=2)

H

(�; �)S

(1=2)�

H

(�

0

; �

0

)

o

= C

H

(�; �)�(� � �

0

)�(� � �

0

); (4.58)

18

Bello's original denomination is based on the statistics of the h(t; t � � ) when h(t; s) denotes the system's kernel.

The function h(t; t � � ) is wide{sense stationary with respect to t and uncorrelated with respect to � . This is the way

how Bello set up the classical denomination of wide{sense stationary uncorrelated scattering (WSSUS). Notwithstanding

the undeniable relevance of Bello's classical work the reader may agree that the terminology is somewhat of a historical

misnomer as it does not take into account the symmetric behaviour of the WSSUS channel w.r.t. time and frequency,

i.e., WSSUS can be much more concisely characterized by uncorrelated spreading.
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here, the function C

H

(�; �) is the so{called scattering function. A WSSUS channel is uniquely char-

acterized by its scattering function.

Using the fact that

S

(�)

H

(�; �) = S

(1=2)

H

(�; �)e

�j2���(��1=2)

:

it is easy to show the statistical �{invariance of the WSSUS concept [205]:

E

n

S

(�)

H

(�; �)S

(�)�

H

(�

0

; �

0

)

o

= E

n

S

(1=2)

H

(�; �)S

(1=2)�

H

(�

0

; �

0

)

o

e

�j2�f����

0

�

0

g(��1=2)

= C

H

(�; �)�(� � �

0

)�(� � �

0

)e

�j2�f����

0

�

0

g(��1=2)

= C

H

(�; �)�(� � �

0

)�(� � �

0

): (4.59)

The statistics of the generalized Weyl symbol are accordingly given by

EfL

(�)

H

(t; f)g = 0; (4.60)

EfL

(�)

H

(t; f)L

(�)

�

H

(t

0

; f

0

)g = R

L

(t� t

0

; f � f

0

): (4.61)

Here, R

L

(t; f) denotes the so{called time{frequency correlation function of a WSSUS system which is

in Fourier correspondence to the scattering function. Due to its physical interpretation the scattering

function is the most natural way to present WSSUS systems [197]. But also in our particular context

of matching WH families the scattering function leads to a compact representation.

4.6.1 Optimum Single Pulse

In general, a stochastic operator has no eigensignals. Nevertheless, it makes sense to ask about

that particular signal which is the best approximation to an eigensignal in an average sense over the

ensemble of LTV systems. This can be made precise by evaluating the expectation of the orthogonal

distortion. The output signal can be split up as follows:

(H
) (t) = hH
; 
i 
(t) + �

min

(t);

where

h
; �

min

i = 0

such that using Pythagoras:

k�
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k
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= kH
k

2

� jhH
; 
ij

2

:

We are interested in the expectation over the WSSUS ensemble

E

n
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k

2
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jhH
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ij

2

o

: (4.62)

This expectation can be expressed in terms of the channel's scattering function C

H

(�; �):

Efk�

min

k

2

g =

Z

�

Z

�

C

H

(�; �)d� d� �

D

C

H

; jA




j

2

E

; (4.63)
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where we have used properties (B.17), (B.24) and (B.33) of the generalized spreading function and

the �{invariant de�nition of WSSUS (4.59) in the following way
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Minimizing the expected orthogonal distortion leads to a compact optimization problem




opt

= arg max




D

C

H

; jA




j

2

E

; k
k = 1: (4.64)

which is seen to be structurally equivalent to the STFT window optimization criterion (4.44) when

one replaces the magnitude squared spreading function jS

H

(�; �)j

2

by the channel's scattering function

C

H

(�; �).

4.6.2 Optimum Weyl{Heisenberg Transmission Set

The above discussed optimum single pulse may be of interest as a test signal for measuring channel

characteristics (channel sounding). However, for the digital communication over a time{varying chan-

nel we have to select a whole set of transmission signals. The time{frequency plane is a natural domain

to study the basic signal design principles (modulation schemes) of multiple access systems. Existing

digital mobile communication systems can be coarsely split up into two categories [269, 336, 379]:

� Time{division/frequency division multiple access systems where the e�ective transmission pulse

covers approximately one Heisenberg cell and orthogonality is obtained by time{frequency{

disjointness.

� Spread spectrum systems where the e�ective transmission pulse (the signal component corre-

sponding to one information bearing symbol) covers a region much larger than one Heisenberg

cell, orthogonality is obtained by digital modulation via speci�c binary sequences (the e�ective

pulses of di�erent users are time{frequency{overlapping).
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Within the existing standards (such as the European GSM, or the U.S. IS{54) there is no design

freedom for an explicit matching of the transmission signal

19

. However, for the development of future

systems the need for bandwidth e�ciency and the increasing digital signal processing capabilities make

it reasonable to return to the roots and ask about how to adapt a (reasonably structured) signal set

to the a priori knowledge about a WSSUS channel. Clearly, the result of such an optimization will

always have only philosophical impact in so far as there are many other practical side constraints that

have to be met in the design of a practical digital communication system.

We here consider the following setup: The input signal is a weighted linear combination of a WH

set based on a transmission pulse 
(t):

x(t) =

X

m

X

n

p(m;n)


(mT;nF )

(t); (4.65)

where p(m;n) are considered as information bearing pulse amplitudes and T may e.g. be considered

as the symbol rate and F as the channel separation (see Figure 4.3). However, we treat inter{ and

cochannel interference in a common manner such that our results are independent of the actual rule

for channel access. Note, that depending on the de�nition of the prototype (which need not be a

transmission pulse in the classical sense) (4.65) allows to cover any practical modulation scheme (it is

the mapping from the user's bit stream onto the pulse amplitudes p(m;n) that allows distinguish the

variety of digital communication systems).
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Figure 4.3: The considered digital communication setup.

We furthermore assume uncorrelated pulse amplitudes with normalized power:

E

p
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nn
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; (4.66)

where �

m;m

0

is the Kronecker symbol (�

m;m

0

= 1 for m = m

0

else zero). The condition (4.66) is, in

principle, realistic for modern digital communication systems but it certainly leads to a considerable

narrowing of the modulation schemes that can be covered in connection with (4.65). In particular,

the so{called Gaussian minimum{shift keying (GMSK) principle that underlies the European GSM

standard would require statistical dependence between temporally adjacent pulse amplitudes.

A matched �lter receiver for the symbol associated to 


(mT;nF )

(t) evaluates an inner product of




(mT;nF )

(t) and the channel's output signal (Hx)(t) (we assume noise free observation) :

p̂(m;n) =
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where we have a introduced a discretized version of the STFT kernel de�ned as

H
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0

F;mT; nF ):
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It should be noted that channel coding can be interpreted as implicitly matching the e�ective transmission signal

by linear combination of transmission pulses. The weights of such a combination are, of course, restricted to binary

numbers which leads to problems beyond the scope of this work. Yet, the combined consideration of channel coding and

modulation is a promising perspective for future systems (see [379] for an excellent recent contribution in this spirit).
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Due to the distortion caused by the channel the matched �lter output contains undesired contribu-

tions from other pulses. The optimum transmission pulse minimizes the total expected energy of all

interfering distorted pulses:
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= arg min
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; (4.67)

where the expectation is over the WSSUS channel and the amplitude ensemble and the weight function

selects contributions from all pulses with di�erent TF localization:
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:

In order to compute this expectation we note that based on (4.66) one has the fact that
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and we introduce (4.37) in order to compute the expectation over the WSSUS ensemble:
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Combining these results we have
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Hence, the optimization of the transmission pulse according to (4.67) is given by




opt;G

= arg min
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(4.68)
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which is structurally equivalent to the matching criterion of the Gabor expansion of a nonstationary

process (3.40) (by replacing jEA

x

(�; �)j

2

by C

H

(�; �)). From the general viewpoint of multirate

signal processing this equivalence is not unexpected: In a discrete{time setting, the Gabor expansion

corresponds to DFT �lter banks, a subclass of uniform �lter banks, whose theory is well{known for

its mathematical equivalence to transmultiplexer theory [54, 62, 357]. In view of the parallelism with

the Gabor matching theory we refer to Section 3.4 for a detailed discussion of (4.68). However, recall

that the matching of a Weyl{Heisenberg set includes matching the sampling grid. In this respect, we

emphasize that all of the arguments in Section 3.4 that led to the matched grid:

T

F

=

�

0

�

0

;

essentially apply to the WSSUS case. That is, the presented theory essentially allows to design

an e�cient (DFT based), perfect reconstruction transmultiplexer whose prototypes are approximate

eigensignals of an underspread WSSUS channel. This means that any user \sees" an almost nondis-

persive channel with random gain (regardless of the multiple access rule).

4.7 Extension to Matched Multiwindow Expansions

In the previous sections we have shown that underspread LTV systems can be uniquely analyzed and

realized via STFT{based methods. In both cases we have used a minimum{norm deconvolution in

order to link the STFT{based non{unitary system representations (the short{time transfer function

T

(
)

H

(t; f) and the multiplier symbol M(t; f)) to the unitary Weyl correspondence. However, while

such a minimum{norm deconvolution was apt to proof invertibility on a subspace of underspread

operators, it is of limited practical relevance due to its huge numerical expense. In order to realize an

underspread operator with given GWS we now discuss multiwindow methods both for the theoretically

simple continuous and the practically important discrete setting.

4.7.1 Continuous Expansion

Any operator with restricted spreading characterized by

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

H

(�; �);

can be written as a continuous Weyl{Heisenberg expansion

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�)dt df; (4.69)

where the prototype operator is determined by the spreading constraint:

S

(�)

P (�)

(�; �) = �

H

(�; �):

In Section 4.5 we have shown how STFT analysis{modi�cation{synthesis allows to realize underspread

operators in the form of a Weyl{Heisenberg expansion based upon the rank{one projection operator

P




(see Section 4.5):

H

STFT

=

Z

t

Z

f

M(t; f)P

(t;f)




dt df;

where M(t; f) is the multiplier and P




is the rank{one projection onto the window. The prototype

operator in (4.69) is not rank{one. However, by using the singular value decomposition of the prototype

operator,

P(�) =

X

k

�

k

P

u

k

;v

k

;
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one can set up a multiwindow expansion in the following form:

H =

X

k

�

k

H

STFT;k

(4.70)

with

H

STFT;k

=

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

u

k

;v

k

dt df;

i.e., we have a weighted parallel combination of STFT{based systemsH

STFT;k

with (i) equal multiplier

function given by the GWS L

(�)

H

(t; f), (ii) the analysis/synthesis windows given by the (�{dependent)

singular signals of the prototype operator, u

k

(t); v

k

(t), and (iii) the weights determined by the (�{

dependent) singular values �

k

of the prototype operator [205].

The number of windows required is theoretically in�nite. In practice, a small number of windows

will lead to su�cient precision. The Hilbert{Schmidt norm of the approximation error depends on

the singular value distribution of the prototype operator (we presuppose that the singular values are

indexed in the order of non{increasing magnitude):
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: (4.71)

A further simpli�cation may be based on the fact that the prototype operator is approximately normal

such that one can use identical analysis and synthesis windows u

k

(t) = v

k

(t), then, the \weights" are

the generally complex eigenvalues. Note, furthermore, that the problem of �nding the optimum

approximation by a single window STFT system leads back to a window optimization criterion of the

previous chapter:




opt;2

(t) = arg min




kP(�) �P




k = arg min




D

�

H

; A

(�)




E

subject to k
k = 1:

4.7.2 Discrete Expansion

The GWS of an underspread system is a 2D{lowpass function, in Section 4.3.5 we have already pointed

out that this leads to a discrete Weyl{Heisenberg expansion in the following form:

H =

X

l

X

m

L

(�)

H

(lT;mF )P

(lT;mF )

(�):

From the just discussed continuous case we know that this can be realized as a multiwindow, but

now also multirate STFT �lter, i.e., consisting of STFT analysis, sampling on a rectangular grid,

multiplicative modi�cation and STFT synthesis. That is, we have a structurally simple, directly

parallelizable multirate realization of underspread operators. This is what makes the approximate

symbol calculus,

L

(�)

H

1

H

2

(lT;mF ) � L

(�)

H

1

(lT;mF )L

(�)

H

2

(lT;mF );

to a feasible, e�cient alternative to existing methods for the equalization, inversion or more general

treatment of underspread LTV systems.

4.7.3 Illustrative Example: Practical Nonstationary Wiener Filter

Again, the nonstationary Wiener �ltering (minimum mean{squared error �ltering) provides a good

example for the relevance of the presented theory. The nonstationary Wiener �lter is given by

H

MMSE

= R

x

(R

x

+R

n

)

�1

;
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where R

x

;R

n

are the correlation operators of the signal and noise process, respectively. More details

have been discussed in Section 2.1.1, appropriate references are [268, 326, 355] and in particular [199].

We furthermore assume incomplete a priori knowledge in the form of a given spreading constraint

�

0

; �

0

of an underspread process and contamination with white noise with correlation:

R

n

= �

2

n

I:

The Wigner{Ville spectrum is the Weyl symbol of the correlation operator, for the white noise we

have:

EW

n

(t; f) = �

2

n

:

If we would have given the Wigner{Ville spectrum of the signal process then the Weyl symbol of the

nonstationary Wiener �lter were in good approximation given by

20

:
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(t; f) + �

2

n

:

However, since we do not know the exact second order statistics of the signal process we have to

replace the expected Wigner distribution by its estimate based on the observation. Moreover, we can

switch to the rectangular sampling grid T =

1

2�

0

and F =

1

2�

0

since we presuppose that all involved

operators are (at least approximately) jointly underspread with the spreading constraint determined

by the a priori knowledge about the signal process:
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:

For the derivation of an optimum estimator we refer the reader to the Appendix D. There it is shown

that given a noisy observation

y(t) = x(t) + n(t);

where x(t) is a circular complex, zero{mean, nonstationary Gaussian process with known spreading

constraint �

x

(�; �) (with regard to EA

x

(�; �)) and n(t) is circular complex, zero{mean stationary white

Gaussian noise with variance �

2

n

, one can show that the MVUB estimator of the process' Wigner{Ville

spectrum is given by

b
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D
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P
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y; y

E

;

where

b

P is the prototype operator of the minimum{norm Weyl{Heisenberg expansion of the process'

correlation operator R

x

according to the spreading constraint �

x

(�; �). The practical realization of

this estimator is given by the optimum �nite{rank approximation as a weighted sum of spectrograms:

b
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�

k
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(u

k

)

y

(t; f);

where the window functions are the eigensignals of the prototype operator corresponding to the spread-

ing constraint. The MMSE �lter can then be realized as a �nite{rank multiwindow STFT{based

system in the form

H

MMSE

=

N

X

k=1

�

k

X

l

X

m

L

H

MMSE

(lT;mF )P

(lT;mF )

u

k

;

where the window functions u

k

(t) again are the eigensignals of the prototype operator corresponding

to the spreading constraint of the signal process.

This leads to a highly e�cient realization as we can use one and the same set of orthogonal windows

for the optimum spectral estimation and the optimum �ltering of an underspread process. Figure 4.4

20

For simplicity we suppress the �{parametrization of the GWS, all of the results are basically �{invariant.
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shows a schematic illustration of the overall signal processing scheme. It should be emphasized that

this concept is not as \revolutionary" as it seems on the �rst sight. Existing concepts for speech

enhancement based on a �lter bank which is used both for the estimation of the power spectrum

and the �ltering turn out to be conceptually similar. One has to recognize that averaging over the

instantaneous channel power of succesive blocks is equivalent to the use of a multiwindow estimator

based on time{disjoint (thereby orthogonal) windows. We have already pointed out this equivalence

at the end of the previous chapter. Hence our Weyl{Heisenberg theory may also be seen as an

nonstationary reinterpretation of existing \quasistationary methods". We feel that the presented

theory provides a basis for a more systematic design of nonstationary enhancement �lters in a way

such that the choice of less parameters is subject to a trial and error procedure.

Figure 4.4: Realization of nonstationary Wiener �lter via multiple STFT multiplication systems.

4.8 Numerical Experiments

The multiwindow realization of the Wiener �lter (as discussed in the previous section) is the topic

of this numerical experiment. We consider a synthetical zero{mean, complex{valued nonstationary

signal process with time{varying bandpass{like innovations system. The observation of this process

is subject to additive, white Gaussian noise. We study the performance of the following exact and

approximate Wiener �lter realizations for di�erent noise levels:

1. The exact Wiener �lter based on complete knowledge of R

x

and the noise level, computed via

matrix inversion.

2. An approximate Wiener �lter also based on complete second{order knowledge but computed via

the symbolic (transfer function) calculus using Zadeh's function.

3. Another approximate realization based on complete knowledge now realized via the multiwindow{

STFT scheme.
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SNR of observation

Filter method

{3 {2 {1 0 1

Exact Wiener �lter

compl. 2nd{ord.{knowl.

4:0 3:3 2:5 2:1 1:2

Multi{STFT realization

compl. 2nd{ord.{knowl.

3:9 3:1 2:3 1:6 0:9

Multi{STFT realization

incompl. 2nd{ord.{knowl.

3:1 2:1 1:2 0:2 �0:7

Table 4.1: Average SNR{improvement in dB of the various �lter methods for di�erent noise levels

4. A \practical" enhancement scheme based on the incomplete knowledge of (i) the support of

EA

x

(�; �), and (ii) the noise level using a multiwindow STFT both for the estimation and the

�ltering (see Figure 4.4). It should be emphasized that this concept uses no a priori knowledge

about the (absolute) time{frequency localization of the signal process.

Table 4.1 lists the average SNR improvement of the �lter schemes for di�erent levels of input SNR

measured in dB. We have not included method 2. in this table as it shows no signi�cant di�erence

to the exact Wiener �lter. (A speci�c experiment about the symbolic calculus for underspread and

overspread operators can be found at the end of the following chapter.) The practical enhancement

scheme shows good performance for negative SNR levels while it breaks down at positive SNR levels,

see the last line of Table 4.1. Figure 4.5 shows the underlying window functions, the Rihaczek spectrum

of the process, and the observation{dependent features of the \practical" �ltering scheme for typical

noise and signal realizations at input{SNR=0dB.

4.9 Summary

In this chapter we have studied linear time{varying systems via time{frequency parametrized rep-

resentations. The generalized spreading function (GSF) S

(�)

H

(�; �) characterizes the time{frequency

shifts caused by a linear system, while the generalized Weyl symbol (GWS) L

(�)

H

(t; f) re
ects time{

frequency selective multiplication in the sense of a time{varying transfer function (within the limits of

Heisenberg's uncertainty principle). The generalized Weyl symbol combines and uni�es various classi-

cal de�nitions of a time{frequency parametrized linear operator representation: Zadeh's time{varying

transfer function, the Kohn{Nirenberg symbol, Bello's \frequency{dependent modulation function",

and the Weyl symbol. The mutual interrelation between the Weyl symbol and the spreading func-

tion is essentially a 2D Fourier transform (symplectic Fourier transform). By de�ning a coordinate

transform acting on the impulse response h(t; t

0

) and the bifrequency function B

H

(f; f

0

) as:

(A

�

h) (t; �) = h

(�)

(t; �)

def

= h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

;

(A

�

B

H

) (f; �) = B

(�)

H

(f; �)

def

= B

H

�

f +

�

1

2

� �

�

�; f �

�

1

2

+ �

�

�

�

;
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we have the following commutative map of relations:

B

H

(f; f

0

) =

1

X

k=1

�

k

U

k

(f)V

�

k

(f

0

)

A

�

���! B

(�)

H

(f; �)

F

���! L

(�)

H

(t; f) =

1

X

k=1

�

k

W

(�)

u

k

;v

k

(t; f)

?

?

y

FF

�1

?

?

y

FF

�1

?

?

y

FF

�1

h(t; t

0

) =

1

X

k=1

�

k

u

k

(t)v

�

k

(t

0

)

A

�

���! h

(�)

(t; �)

F

���! S

(�)

H

(�; �) =

1

X

k=1

�

k

A

(�)

u

k

;v

k

(�; �);

where W

(�)

u

k

;v

k

(t; f) and A

(�)

u

k

;v

k

(�; �) are the cross{Wigner distribution and cross{ambiguity function of

the singular signals, and F denotes the Fourier transform.

Via the product of an LTV system's maximum time shift and maximum frequency shift ("total

spread") we have de�ned a precised version of the classical underspread/overspread classi�cation: Un-

derspread systems feature a total spread much smaller than one and overspread systems larger than

one. The generalized Weyl symbol of an underspread system satis�es a number of asymptotic proper-

ties that establish a time{frequency{parametrized generalization of any of the well{known properties

of an LTI system's transfer function.

We have de�ned a "short{time transfer function" (STTF) as a practical point estimator of the

system's generalized Weyl symbol. This STTF is based on time{frequency shifted versions of a proto-

type signal applied to the system's input followed by matched �ltering applied to the system's output.

We have shown that this STTF establishes a unique representation of an underspread LTV system,

provided that the prototype is matched to the underspread support by our standard matching rule

T




F




=

�

0

�

0

;

where T




/F




are the duration/bandwidth of the prototype and �

0

/�

0

are the maximum time/frequency

shift of the system. Analogously to the system analysis issue, the short{time Fourier transform allows

to synthesize underspread systems by putting a multiplicative modi�cation between the analysis and

synthesis stage. Moreover, we have pointed out how the presented STFT{�lter theory can be used for

the design of generalized perfect reconstruction systems.

We have extended multiwindow methods from their classical use in time{invariant spectral es-

timation to a combined time{varying �ltering and spectral estimation. Speci�cally, we have shown

that one and the same set of windows is matched to the spectral estimation and optimum �ltering

of an underspread process. These theoretical results lead to a structurally simple and highly parallel

implementation of a practical nonstationary Wiener �lter.

We have reviewed and extended the theory of the stochastic WSSUS class. In particular, we have

shown: (i) The WSSUS de�nition is invariant within the family of the generalized Weyl symbol, (ii)

Asking about approximate eigensignals of a WSSUS channel leads to a prototype matching criterion

that parallels our STFT{window optimization theory. (iii) An optimum time{frequency tiling for the

digital transmission over WSSUS channels can be found analog to matched Gabor grid of the previous

chapter.

We emphasize that most of the results of this chapter carry over to the discrete time case when

we restrict ourselves to j�j = 1=2. In particular, all of the presented STFT results carry over to

nonsubsampled DFT �lterbank theory and the WSSUS matching theory is essentially applicable for

the optimization of DFT{based transmultiplexers. With regard to � = 0, it appears to be impossible

to reformulate the continuous time theory in a way that maintains the unitarity of the Weyl corre-

spondence. Nevertheless, the speci�c mathematical properties of the Weyl correspondence make it to

the fundamental theoretical tool for time{frequency{parametrized operator representation.
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Figure 4.5: Nonstationary Wiener �lter via multiplicative modi�cation of multiwindow STFT: (a)

x(t)|realization of signal process, x(t)+n(t)|noisy version, y

1

(t){output of theoretical, exact Wiener

�lter, y

2

(t) output of practical, approximate Wiener �lter, (b) the matched window set, (c) time{

varying spectrum of signal process, (d) time{varying transfer function of exact Wiener �lter, (e)

time{varying transfer function of theoretical approximation via KN{symbol calculus, (f) multiwindow

spectral estimate based on the realization (as shown in (a)), (g) time{varying transfer function of

practical, approximate Wiener �lter, (h) expected ambiguity function of signal process (i) e�ective

spreading function of multiwindow kernel.



Chapter 5

On Underspread Operators

This chapter is devoted to a theoretical study of Hilbert{Schmidt operators with restricted spreading

function. We start reviewing the idea of a symbolic calculus, which in turn leads to the spreading

constraint as a prerequisite for the applicability of the generalized Weyl symbol (GWS). It is shown

that underspread operators form an approximate commutative algebra. In particular we prove that

the product of the generalized GWSs of two operators is approximately equal to the symbol of the

product operator (approximate homomorphism). Moreover, we show that (i) underspread operators

are approximately normal, (ii) the GWS of an underspread operator is asymptotically �{invariant,

(iii) the GWS and a properly time{frequency localized signal form an approximate eigenpair, and

(iv) any underspread operator can be realized by multiplicative modi�cation of the short{time Fourier

transform using an appropriately localized analysis/synthesis window.

Along with the abstract formulation of quantitative results we point out their relevance in signal

and system theory.

5.1 On the Concept of a Symbolic Calculus

As already mentioned in the previous chapter the basic idea of a symbolic calculus belongs to common

engineers' knowledge as far as linear time{invariant (LTI) operators are concerned. Here, it is a well{

known and often used fact that the operator product corresponds to a product of the symbols (transfer

functions). Mathematically, one says that LTI operators form a commutative algebra. In the dual

case of linear frequency{invariant (LFI) operators (i.e., time{domain multiplication operators), the

mathematical structure is identical. Thus, whenever H and G are both LTI or both LFI one has a

perfect symbol calculus,

L

(�)

G

(t; f)L

(�)

H

(t; f) = L

(�)

GH

(t; f) = L

(�)

HG

(t; f); (5.1)

where L

(�)

H

(t; f) is the generalized Weyl symbol (GWS).

Clearly, the identity operator is both LTI and LFI, its symbol is time{frequency{invariant equal

to one (the neutral element of the �eld of complex numbers):

L

(�)

I

(t; f) = 1;

a fact that together with (5.1) allows to extend the symbolic calculus to the computation of the inverse

operator (existence provided, exactly valid for both LTI or LFI operators):

L

(�)

H

�1

(t; f) =

1

L

(�)

H

(t; f)

:

Operator composition or inversion appears in widespread applications particularly in statistical

signal processing. An important example is minimum mean{squared error (MMSE) �ltering [199] as

101
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already discussed in more detail in previous chapters. Given statistically independent signal and noise

processes with correlation R

x

and R

n

, respectively, the general MMSE �lter

H

MMSE

= R

x

(R

x

+R

n

)

�1

can be formulated by scalar operations:

L

(�)

H

MMSE

(t; f) =

L

(�)

R

x

(t; f)

L

(�)

R

x

(t; f) + L

(�)

R

n

(t; f)

; (5.2)

valid whenever the involved operators are either all LTI or all LFI (i.e., the signal and noise processes

are either both stationary or both nonstationary white) and the inverse is well{de�ned

1

.

Recall that the LTI and LFI operators are characterized by a severe spreading constraint, i.e., the

spreading function of the operator is ideally concentrated on either the �{axis

S

(�)

H

LTI

(�; �) = h(�)�(�);

or the �{axis

S

(�)

H

LFI

(�; �) = �(�)M(�);

as discussed in Section 4.2.3.

Intuitively, we expect that the symbolic calculus remains approximately valid for operators which

are slightly perturbed versions of ideal LTI or LFI operators, i.e., \slowly" time{varying or \slowly"

frequency{varying operators. Although this idea is quite old (at least in its implicit consequences), the

present work seems to present the �rst detailed analysis of the conceptual limitation of time{frequency

parametrized operator symbols that form the GWS class.

5.1.1 Orthogonal Resolutions of the Identity and Symbolic Calculus

LTI and LFI operators are never Hilbert{Schmidt (HS). However, in case of LTV systems or nonsta-

tionary processes HS operators are practically predominant. We now review the well{known discrete

symbolic calculus of commuting normal HS operators [252, 311].

As mentioned in the discussion of the Karhunen{Loeve transform (Chapter 3), a normal HS op-

erator H can be expanded into a weighted sum of orthogonal projection operators, i.e., a perturbed

orthogonal resolution of the identity [252]:

H =

1

X

k=1

�

k

P

u

k

and I =

1

X

k=1

P

u

k

; (5.3)

where the eigenvalues can be formally written as a HS operator inner product

�

k

= hH;P

u

k

i : (5.4)

Two normal HS operators H;G commute if and only if they have a common eigenbasis fu

k

g. One

has (using the fact that P

u

k

P

u

l

= P

u

k

�

kl

)

GH = HG =

1

X

k=1

1

X

l=1

�

k;G

�

l;H

P

u

k

P

u

l

=

1

X

k=1

�

k;G

�

k;H

P

u

k

;

where �

k;H

; �

k;G

are the eigenvalues of the operators H;G. Once we consider the eigenbasis fu

k

g

as a priori knowledge, the product operator is uniquely characterized by the multiplication of the

eigenvalue distributions [252]:

�

k;GH

= �

k;HG

= �

k;G

�

k;H

: (5.5)

1

Within the framework of a symbolic calculus, the generalized inverse (in the Moore{Penrose sense) can be de�ned

in a straightforward way, by setting L

(�)

H

MMSE

(t; f) to zero where the magnitude of the denominator in the left side of

(5.2) is below some threshold.
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In our context it is appropriate to call these eigenvalue distributions discrete symbols of the operator

and (5.5) is then referred to as perfect symbol calculus. Clearly, the identity is the neutral element of

any such commutative operator algebra, one has

�

k;I

= 1;

and the generalized operator inversion can be essentially written as an algebraic inversion in the �eld

of complex numbers:

�

k;H

�1 =

8

>

<

>

:

1

�

k;H

; for �

k;H

� �;

0; for �

k;H

< �:

5.1.2 Nonorthogonal Weyl{Heisenberg Resolutions of the Identity

STFT{based Resolutions of the Identity. Recall that the reproducing formula underlying STFT

synthesis can be written as (for details see Section 4.5)

I =

Z

t

Z

f

P

(t;f)




dt df; (5.6)

where P




is the rank{one projection onto the window and the superscript denotes time{frequency

shifting as has been introduced in Section 2.3.1:

P

(t;f)




= S

(t;f)

P




S

(t;f)�

;

where S

(t;f)

is a time{frequency shift operator. When the underlying window is well time{frequency

localized, then P

(t;f)




is time{frequency selective about (t; f).

STFT based system design is based on a multiplicative perturbation of (5.6):

H =

Z

t

Z

f

M(t; f)P

(t;f)




dt df:

Idealized Interpretation. The transfer function of an LTI system and the power spectrum of a

stationary process are continuous eigenvalue distributions of linear time{invariant operators (mathe-

matically precise one should speak about an approximate point spectrum, because the point spectrum

is always discrete). The common idealized interpretation of Weyl{Heisenberg operator representations

(as e.g. the generalized Weyl symbol) may be interpreted as a time{frequency parametrized eigenvalue

distribution �(t; f) of a linear time{varying operator in the sense of

H

?

=

Z

t

Z

f

�(t; f)P

(t;f)

dt df:

This interpretation is in obvious con
ict with Heisenberg's uncertainty since P

(t;f)

should be an ideally

time{frequency selective localization operator. In particular one would have to require orthogonality

of the time{frequency shifted versions of the prototype operator:

P

(t;f)

P

(t

0

;f

0

)

?

=

8

>

<

>

:

P

(t;f)

; (t = t

0

) ^ (f = f

0

);

0; (t 6= t

0

) _ (f 6= f

0

):

(5.7)

However, such orthogonality is generally impossible. It is particularly unrealistic when P is rank{

one, i.e., P = P




since the STFT expansion set 


(t;f)

is highly linear dependent. But a rank{one
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projection onto a well time{frequency localized signal is obviously the optimally concentrated time{

frequency localization operator.

Discrete Expansion. In this work we usually consider LTV operators which are of Hilbert{Schmidt

(HS) type. HS operators always have a discrete eigenvalue spectrum (see Section 5.1.1). This is an-

other fundamental contradiction with the idea of a continuous time{frequency parametrized eigenvalue

spectrum. From this point of view one may already expect that time{frequency discretization should

come up naturally whenever a time|frequency parametrized eigenvalue spectrum makes sense.

A discrete Weyl{Heisenberg resolution of the identity is given by

I =

X

l

X

m

P

(lT;mF )

:

Mutual orthogonality of the (l;m){indexed projection operators P

(lT;mF )

,

P

(lT;mF )

P

(l

0

T;m

0

F )

= P

(lT;mF )

�

l;l

0

�

m;m

0

is now theoretically possible such that there exist operators which are exactly diagonalized by a discrete

Weyl{Heisenberg basis:

H =

X

l

X

m

�(l;m)P

(lT;mF )

;

where �(l;m) is the hypothetical eigenvalue distribution (point spectrum) of H.

However, for the rank{one case P = P




it is well{known that orthonormal Weyl{Heisenberg bases

are di�cult to obtain and lead always to bad time{frequency localized prototype signals 
 [184, 28].

Hence, the existence of a diagonalizing Weyl{Heisenberg basis 


(lT;mF )

is a far too restrictive condition

for the classi�cation of operators that allow an approximate Weyl{Heisenberg symbol calculus.

5.2 Operators with Restricted Spreading

A general LTV operator can be formally written as a continuous Weyl{Heisenberg expansion in terms

of the generalized Weyl symbol L

(�)

H

(t; f),

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�) dt df; (5.8)

where the in�nitesimal prototype operator P(�) is de�ned by

S

(�)

P (�)

(�; �) � 1 , L

(�)

P (�)

(t; f) = �(t)�(f);

so that, formally :

L

(�)

H

(t; f) =

D

H;P

(t;f)

(�)

E

: (5.9)

The prototype operator characterizes the properties and interpretation of the GWS. Recall that the

eigenvalues of a normal HS operator can be written as (see (5.4))

�

k

= hH;P

u

k

i ;

where P

u

k

is the rank{one projection onto the window. Hence, the interpretation of the GWS as

a time{frequency parametrized eigenvalue distribution would require that P(�) be a time{frequency

selective projection operator. But actually P(�) is far from an orthogonal projection operator. Specif-

ically for � = 0, it is even unitary up to a constant factor 2 (for more details, see the discussion in

Section 2.3.2). Hence, we have the fact that for a general LTV operator H the prototype operator
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of the continuous Weyl{Heisenberg expansion does not at all support the idea of a time{frequency

parametrized eigenvalue distribution. However, under the assumption of restricted spreading one can

set up a more adequate version of the continuous Weyl{Heisenberg expansion as follows.

Many practically important LTV operators satisfy a certain spreading constraint, in so far as the

spreading function S

(�)

H

(�; �) is restricted to a domain centered about the origin. We characterize such

a spreading constraint via an (0/1{valued) indicator function �

H

(�; �) with minimum area such that:

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

H

(�; �): (5.10)

Note that this equation is �{invariant since the magnitude of the generalized spreading function does

not depend on �.

For such operators, the multiplication of (5.10) carries over to an idempotent convolution of the

generalized Weyl symbol which we write in terms of the GWS of an �{dependent prototype operator

P(�):

L

(�)

H

(t; f) = L

(�)

H

(t; f) � �L

(�)

P (�)

(t; f) =

Z

t

0

Z

f

0

L

(�)

H

(t

0

; f

0

)L

(�)

P (�)

(t� t

0

; f � f

0

)dt

0

df

0

:

(5.11)

This means that the spreading function of P(�) is just the indicator function

S

(�)

P (�)

(�; �) = �

H

(�; �): (5.12)

Using the time{frequency shift{covariance of the GWS (C.15) we have

L

(�)

P (�)

(t� t

0

; f � f

0

) = L

(�)

P

(t

0

;f

0

)

(�)

(t; f):

The idempotent convolution (5.11) thus leads to an alternative continuous Weyl{Heisenberg operator

decomposition:

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�) dt df; (5.13)

structurally equivalent to (5.8) but now based on a Hilbert{Schmidt prototype operator. Such a

prototype operator is still no projection operator but | in view of (5.12) | it cannot introduce

arbitrarily large time{frequency shifts. Hence, it is basically time{frequency selective and the dominant

singular signals are typically well time{frequency concentrated about the origin of the time{frequency

plane. With increasing spread of �

H

(�; �) the prototype operator P(�) gets increasingly �{invariant,

positive and its essential range gets larger.

According to the alternative Weyl{Heisenberg expansion (5.13) we can rede�ne the generalized

Weyl symbol for any operator satisfying the spreading constraint in terms of the associated prototype

operator:

L

(�)

H

(t; f) =

D

H;P

(t;f)

(�)

E

:

Clearly, the continuous Weyl{Heisenberg decomposition (5.13) is highly ambiguous since the choice

of any alternative indicator function ~�(�; �) that contains the domain of �

H

(�; �),

�

H

(�; �) = ~�(�; �)�

H

(�; �); (5.14)

leads to a di�erent prototype operator

e

P(�) according to

S

(�)

~

P (�)

(�; �) = ~�(�; �):

It is intuitively appealing to take the prototype operator with optimally concentrated spreading func-

tion but we now show that there is a more concrete reasoning for adopting this operator.
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Recall that the integral over the magnitude squared spreading function equals the Hilbert{Schmidt

norm of the operator:

k

e

P(�)k

2

=

Z

�

Z

�

~�(�; �)d� d�:

This shows that among all indicator functions satisfying (5.14) the indicator function �

H

(�; �) has

minimum area and corresponds to the characteristic operator with minimum Hilbert{Schmidt norm.

Hence, one may de�ne the prototype operator with spreading function �

H

(�; �) by the following

optimization principle:

P = arg min

e

P

k

e

Pk

2

subject to H =

Z

t

Z

f

L

(�)

H

(t; f)

e

P

(t;f)

dt df: (5.15)

The formal setup of such a minimum{norm Weyl{Heisenberg expansion provides an abstract

\short{cut" derivation for minimum{variance unbiased (MVUB) time{varying auto{ and cross spec-

trum estimators (the details are discussed in the Appendices D and E):

� Given a noisy observation of a circular complex, zero{mean, nonstationary Gaussian process

x(t) with known spreading constraint �

x

(�; �) (with regard to EA

x

(�; �)):

y(t) = x(t) + n(t);

where n(t) is circular complex, zero{mean, stationary white Gaussian noise with variance �

2

n

,

one can show that the MVUB estimator of the process' Wigner{Ville spectrum is given by

b

EW

x

(t; f) =

D

b

P

(t;f)

y; y

E

;

where

b

P is the prototype operator of the minimum{norm Weyl{Heisenberg expansion of the

process' correlation operator R

x

according to the spreading constraint �

x

(�; �).

� Given an observation of a noise{free, circular complex, stationary white, zero{mean, unit{

variance Gaussian input process and noisy output process,

y(t) = (Hx) (t) + n(t);

where H is a linear time{varying system with known spreading constraint �

H

(�; �) and n(t) is

zero{mean, circular complex, stationary white Gaussian noise, one can show that the MVUB

estimator of the system's Weyl symbol is given by

b

L

H

(t; f) =

D

y;

b

P

(t;f)

x

E

;

where

b

P is the prototype operator of the minimum{norm Weyl{Heisenberg expansion of the

system H according to the spreading constraint �

H

(�; �).

5.3 Rectangular Constraint

Now and for the rest of this chapter we consider a rectangular spreading constraint de�ned as

2

:

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�): (5.16)

2

Such a spreading constraint basically corresponds to a non{causal LTV system. Causal systems can, however, easily

be incorporated into this framework by extracting an ideal time{delay system such that the spreading function of the

remaining subsystem lies inside the centered rectangle.
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Note that apart from the analytical feasibility of quantitative studies such a spreading constraint

corresponds to the practical setup of minimum a priori knowledge about a nonstationary environment.

Take for example the mobile radio channel [269] where �

0

is determined by the maximum admissible

velocity of the radio stations while �

0

comes out of the pragmatic modeling necessity of using Viterbi

equalizers with severely constrained tap number.

According to (5.16), the generalized Weyl symbol is a two{dimensional low{pass function which is

uniquely determined by its samples on a rectangular time{frequency grid with constants T �

1

2�

0

and

F �

1

2�

0

, respectively. We have the following reconstruction equation:

L

(�)

H

(t; f) = TF

X

l

X

m

L

(�)

H

(lT;mF )L

(�)

P (�)

(t� lT; f �mF ); (5.17)

where the generalized Weyl symbol of the prototype operator is given by:

L

(�)

P (�)

(t; f) =

sin(2��

0

t) sin(2��

0

f)

�

2

tf

: (5.18)

Equation (5.17) corresponds to a discrete Weyl{Heisenberg expansion of the operator H:

H = TF

X

l

X

m

L

(�)

H

(lT;mF )P

(lT;mF )

(�): (5.19)

As pointed out in Section 5.1.2 such a discrete Weyl{Heisenberg expansion comes conceptually closest

to the idea of a time{frequency parametrized perturbed resolution of the identity. It must be empha-

sized that the eigenvalue interpretation of the GWS samples implies the assumption of an approximate

multiplicity TF . This becomes obvious in the discrete trace formula, for a normal HS operator one

has:

X

l

X

m

L

(�)

H

(lT;mF ) =

1

TF

1

X

k=1

�

k

:

However, such an eigenvalue counting argument starts to make sense for

TF � 1;

or, equivalently,

�

0

�

0

� 1=4:

This threshold corresponds exactly to what we have introduced as critical spread. Hence, asymptotic

eigenvalue counting (in the spirit of [367, 106]) gives both an operator theoretic reasoning for the

underspread/overspread classi�cation but also an intuitive indication of the critical Gabor density

(critical phase space density) as discussed in [28, 43, 173, 292].

Oversampling, i.e. , T >

1

2�

0

and F >

1

2�

0

leaves a certain freedom in the choice of P(�). The

spreading function of the prototype operator has to satisfy the anti{aliasing condition:

S

(�)

P (�)

(�; �)

X

k

X

m

S

(�)

H

�

� �

k

F

; � �

m

T

�

= S

(�)

H

(�; �):

This requirement is more severe than its counterpart in the continuous Weyl{Heisenberg expansion

(5.14). However, the freedom in the choice of the prototype operator may be helpful when it comes

to the realization of underspread operators via multiwindow methods as discussed in the previous

chapters.

5.4 Properties of Underspread Operators

So far our discussion of underspread operators was a manycoloured collection of intuitive arguments

with the main conclusion that for operators with constrained spreading the idea of a time{frequency

parametrized symbolic calculus may make sense. Following is a list of concrete quantitative results that

prove this conjecture. Moreover, we discuss further interesting properties of underspread operators.
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5.4.1 Jointly Underspread Operators

In order to formulate a theorem on the approximate symbol calculus we need to formalize the subspace

of underspread operators that satisfy the same spreading constraint.

De�nition. Two operators H and G are jointly underspread with spreading constants �

0

and �

0

when

their spreading functions satisfy:

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�): (5.20)

Equivalently, one can say that two underspread operators G and H are jointly underspread whenever

any linear combination �G+ �H is underspread. Jointly underspread HS operators form a subspace

of the Hilbert space of Hilbert{Schmidt operators with the reproducing formula:

H =

Z

t

Z

f

D

H;P

(t;f)

(�)

E

P

(t;f)

(�)dt df; (5.21)

where P(�) is the jointly underspread prototype operator given by (5.18). The orthogonal projection

of a general HS operator H onto such a reproducing kernel Hilbert space can be formulated as a simple

multiplication in the spreading domain:

S

(�)

H

P

(�; �) = S

(�)

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�);

where H

P

is the projected version of H.

In this chapter, we identify underspread operators as operators with restricted spreading (with no

general requirement on �

0

; �

0

). In any of the following theorems we will explicitly de�ne the maximum

total spread �

0

�

0

for which the result is valid. However, all of these bounds start to make practical

sense for underspread operators in the sense of the previous chapters, de�ned by the asymptotic

requirement �

0

�

0

� 1.

5.4.2 Approximate Multiplicative Symbol Calculus

In order to investigate the possibility of replacing the operator product by the product of the symbols

we need the spreading function of a product of two HS operators:

Proposition 1.1 The generalized spreading function of the composition of two Hilbert{Schmidt oper-

ators with su�cient decay of their spreading function is given by:

S

(�)

GH

(�; �) =

Z

�

0

Z

�

0

S

(�)

G

(�

0

; �

0

)S

(�)

H

(� � �

0

; � � �

0

) e

�j2�f�

0

�(�+1=2)+��

0

(��1=2)�2�

0

�

0

�g

d�

0

d�

0

:

(5.22)

We shall refer to this expression as twisted convolution which is the mathematical terminology for the

case � = 0 [125].

Proof: Based on the inversion formula for the generalized spreading function,

h(t; s) =

Z

�

S

(�)

H

(t� s; �)e

j2��[(1=2+�)t+(1=2��)s]

d�;

one can write the kernel of the composite operator GH in terms of the spreading functions of the

operators:

(GH) (t; s) =

Z

r

(G) (t; r) (H) (r; s)dr

=

Z

r

Z

�

1

Z

�

2

S

(�)

G

(t� r; �

1

)S

(�)

H

(r � s; �

2

)

�e

j2�f�

1

[(1=2+�)t+(1=2��)r]+�

2

[(1=2+�)r+(1=2��)s]g

dr d�

1

d�

2

:
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Then, using the de�nition of the generalized spreading function,

S

(�)

H

(�; �)

def

=

Z

t

h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2��t

dt;

the spreading function of HG is given by a four{dimensional integral

S

(�)

GH

(�; �) =

Z

t

Z

r

Z

�

1

Z

�

2

S

(�)

G

(t + (1=2 � �)� � r; �

1

)S

(�)

H

(r � t + (1=2 + �)�; �

2

)

�e

j2�f�

1

[(1=2+�)(t+(1=2��)�)+(1=2��)r]+�

2

[(1=2+�)r+(1=2��)(t�(1=2+�)� )]g

e

�j2��t

dt dr d�

1

d�

2

:

Since we have required su�cient decay, the integrand is in L

1

and we can interchange the order of

integration. Using the substitution t ! t

1

+ t

2

=2; r ! t

1

� t

2

=2, two integrals collapse by inverse

Fourier transform and by setting �

0

= t

2

+ (1=2 � �)�; �

0

= �

1

one arrives at the �nal result (5.22).

The twisted convolution (5.22) is not far from a conventional convolution which would correspond

to the perfect symbol calculus by virtue of the Fourier duality between L

H

(t; f) and S

H

(�; �) (see

(B.14)):

L

GH

?

= L

G

L

H

, S

GH

?

= S

G

� �S

H

:

Closer inspection of the disturbing complex exponential factor in (5.22) shows that for well{concentrated

spreading functions the twisted convolution approaches a conventional convolution. This thought can

be made precise by the following theorem [208]:

Theorem 5.1 The generalized Weyl symbol of two jointly underspread Hilbert{Schmidt operators H

and G with �

0

�

0

< 1=2 satis�es:

�

�

�

L

(�)

GH

� L

(�)

G

L

(�)

H

�

�

�

< 2 sin (��

0

�

0

(1 + 2j�j)) kS

G

k

1

kS

H

k

1

;










L

(�)

GH

� L

(�)

H

L

(�)

G










2

< 64 �

0

�

0

sin

2

(��

0

�

0

(1 + 2j�j)) kGk

2

kHk

2

;

where kS

H

k

1

denotes the L

1

{norm of the spreading function

kS

H

k

1

def

=

Z

�

Z

�

jS

H

(�; �)j d� d�;

and kHk

2

denotes the Hilbert{Schmidt norm of the operator H.
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Proof: Starting from (5.22) we use the integral triangle inequality and estimate the integrand as follows

�

�

�

L

(�)

GH

� L

(�)

G

L

(�)

H

�

�

�

=

�

�

�

�

�

�

Z

�

Z

�

n

S

(�)

GH

(�; �)�

�

S

(�)

G

� �S

(�)

H

�

(�; �)

o

e

j2�(t��f�)

d� d�

�

�

�

�

�

�

=

�

�

�

�

�

�

Z

�

Z

�

Z

�

0

Z

�

0

S

(�)

G

(�

0

; �

0

)S

(�)

H

(� � �

0

; � � �

0

)

�

�

e

j2�[��

0

(1=2��)��

0

�(1=2+�)+2�

0

�

0

�]

� 1

�

e

j2�(t��f�)

d� d�d�

0

d�

0

�

�

�

� 2

�

0

Z

��

0

�

0

Z

��

0

�

0

Z

��

0

�

0

Z

��

0

�

�

�

S

(�)

G

(�

1

; �

1

)

�

�

�

�

�

�

S

(�)

H

(�

2

; �

2

)

�

�

�

� sin (�[�

2

�

1

(1=2 � �)� �

1

�

2

(1=2 + �) + 2�

1

�

1

�]) d�

1

d�

1

d�

2

d�

2

< max

j�

i

j<�

0

;j�

i

j<�

0

fsin (�[�

2

�

1

(1=2 � �)� �

1

�

2

(1=2 + �) + 2�

1

�

1

�])g

�

�

0

Z

��

0

�

0

Z

��

0

�

0

Z

��

0

�

0

Z

��

0

�

�

�

S

(�)

G

(�

1

; �

1

)

�

�

�

�

�

�

S

(�)

H

(�

2

; �

2

)

�

�

�

d�

1

d�

1

d�

2

d�

2

= 2 sin (��

0

�

0

(1 + 2j�j)) kS

H

k

1

kS

G

k

1

:

In the last step we have used the fact that

max fsin�[��

0

(1=2 � �)� �

0

�(1=2 + �) + 2�

0

�

0

�)]g = sin(��

0

�

0

(1 + 2j�j))

for j� j � �

0

; j�j � �

0

; j�j � 1=2; �

0

�

0

� 1=2:

which is easy to check.

For asymptotic analysis it is appropriate to make this bound slightly coarser. For trace{class

underspread operators one has the fact that

kS

H

k

1

< 4�

0

�

0

tr

p

H

�

H;

since

�

�

�

S

(�)

H

(�; �)

�

�

�

�

1

X

k=1

�

k

= tr

p

H

�

H;

as discussed in Appendix B, (B.22). Furthermore using sinx < x, one has

�

�

�

L

(�)

GH

� L

(�)

H

L

(�)

G

�

�

�

< 32��

3

0

�

3

0

(1 + 2j�j)tr

p

G

�

Gtr

p

H

�

H:

Again starting with (5.22) we use the Schwarz inequality and based on (B.19):

Z

�

Z

�

jS

H

(�; �)j

2

d� d� = kHk

2

;
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we obtain the L

2

{bound as follows
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1

A
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@
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�

2

jS
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2
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2
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2
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2
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2
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2
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2

�

2
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2
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2

1

A
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< 64 �

0

�

0
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2
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i
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i
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2
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2
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2
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2

1
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0

�

0
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2

(��
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�
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(1 + 2j�j)) kGk

2

kHk

2

:

5.4.3 Approximate Commutativity

Theorem (5.1) suggests that two underspread operators commute in an approximate sense. A bound

can be immediately obtained by

kGH�HGk =










L

(0)

GH

� L

(0)

HG
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(0)
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� L

(0)
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(0)
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(0)
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(0)
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� 16 kGkkHk

p

�

0

�

0

sin��

0

�

0

:

However, starting directly with (5.22) allows to obtain a slightly sharper bound, expressed by the

following theorem:

Theorem 5.2 The Hilbert{Schmidt norm of the commutator of two jointly underspread operators H

and G with �

0

�

0

< 1=4 is bounded according to

kGH�HGk

2

< 64�

0

�

0

sin

2

(2��

0

�

0

) kGk

2

kHk

2

:

Proof: For the case � = 0 (5.22) gives:

S

(0)

GH

(�; �) =

Z

�

0

Z

�

0

S

(0)

G

(�

0
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0

)S

(0)

H

(� � �
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0

)e

�j�f�
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g
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0
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0

;
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on the other hand one has:

S

(0)

HG

(�; �) =

Z

�

0

Z

�

0
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(0)

G

(�

0
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(� � �
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; � � �

0

)e
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0

g

d�

0

d�

0

:

We use these two formulas to write the HS{norm of the commutator in terms of the spreading func-

tions of the two operators which in turn gives the desired bound:
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:

5.4.4 Approximate Normality

Underspread operators are approximately normal, a fact that follows immediately from Theorem 5.2

considering the commutation of the underspread operator H and its adjoint H

�

. For an underspread

operator with �

0

�

0

< 1=4 one has the following bound:

kHH

�

�H

�

Hk

2

� 64 �

0

�

0

sin

2

(2��

0

�

0

) kHk

4

:

In practice, (approximate) normality means that one can use eigendecomposition based methods

instead of singular{value decomposition based methods. Typically, this halves the numerical expense

as the singular{value decomposition requires the solution of two eigenproblems.

5.4.5 Realization via Multiplicative STFT Modi�cation

The realization of linear time{varying operators via multiplicative modi�cation of the short{time

Fourier transform (STFT) has been discussed in the foregoing chapter. There, we have seen that the

GWS of a system based on multiplicative modi�cation of the STFT is given by

L

(�)

H

STFT

(t; f) = M(t; f) � �W

(�)




(t; f);

where M(t; f) is the multiplier function and W

(�)




(t; f) is the generalized Wigner distribution of

the analysis/synthesis window. The question whether a given operator can be realized by STFT

modi�cation can be studied by the generalized spreading function of the STFT{based system. It is

given by

S

(�)

H

STFT

(�; �) = m(�; �)A

(�)




(�; �); (5.23)
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where

m(�; �)

def

= F

t!�

F

�1

f!�

fM(t; f)g;

and A

(�)




(�; �) is the generalized ambiguity function of the window. Since A

(�)




(�; �) is usually well

concentrated about the origin, (5.23) indicates that STFT based systems generically show small time{

frequency displacement. On the other hand, one may conclude that underspread operators can be

realized via STFT modi�cation in so far as M(t; f) can be found by a stable deconvolution. Precisely,

one can say the following:

Theorem 5.3 Any underspread operator H with �

0

; �

0

can be realized via multiplicative STFT modi-

�cation, i.e., in the form

H =

Z

t

Z

f

M(t; f)P

(t;f)




dt df;

where P




is the rank{one projection onto an appropriately localized window, i.e., the ambiguity function

satis�es

1�

�

�

�

A

(�)




(�; �)

�

�

�

� �




for j� j � �

0

; j�j � �

0

;

and M(t; f) is a bounded multiplier function.

The maximum deviation between M(t; f) and the Weyl symbol L

(0)

H

(t; f) can be bounded by

�

�

�

M(t; f)� L

(0)

H

(t; f)

�

�

�

<

�




1� �




kS

H

k

1

:

This theorem establishes both a coarse and a �ne matching aspect for STFT{based system design:

� With coarse matching aspect we mean the fact that any underspread system can be realized via

multiplicative STFT modi�cation provided that the essential support of the window covers the

support of the system's spreading function.

� The �ne matching aspect regards the approximate realization of an underspread operator by

using the Weyl symbol as multiplier function (thus avoiding the numerical expense of the decon-

volution that leads to M(t; f) in an exact realization). The goodness of approximation depends

on the choice of the window, it can be measured in terms of �




. Note that �




can never vanish

due to the radar uncertainty principle (see Appendix F, (F.29)).

Proof: The theorem is totally restricted to the case � = 0, for the sake of notational simplicity we

suppress the superscript.

Based on (5.23) the multiplier function is given by a well{de�ned deconvolution:

M(t; f) =

�

0

Z

��

0

�

0

Z

��

0

S

H

(�; �)

A




(�; �)

e

j2�(�t��f)

d� d�: (5.24)

Using the triangle inequality we can estimate the di�erence between M(t; f) and L

H

(t; f) as follows:

jM(t; f)� L

H

(t; f)j =

�

�

�

�

�

�

�

0

Z

��

0

�

0

Z

��

0

 

S

H

(�; �)

A




(�; �)

� S

H

(�; �)

!

e

j2�(�t��f)

d� d�

�

�

�

�

�

�

�

�

0

Z

��

0

�

0

Z

��

0

�

�

�

�

�

S

H

(�; �)

A




(�; �)

� S

H

(�; �)

�

�

�

�

�

d� d�

<

�

�

�

�

�

1

min

j� j<�

0

;j�j<�

0

A




(�; �)

� 1

�

�

�

�

�

�

0

Z

��

0

�

0

Z

��

0

jS

H

(�; �)j d� d�

=

�




1� �




kS

H

k

1

:
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Using the matched Gaussian window de�ned as




0

(t) =

4

s

2�

0

�

0

e

��

�

0

�

0

t

2

;

the ambiguity function of the matched Gaussian window is given by

A




(�; �) = e

�

�

2

�

�

0

�

0

�

2

+

�

0

�

0

�

2

�

;

and its minimum on the underspread support is

min

j� j<�

0

;j�j<�

0

A




(�; �) = e

�

�

2

�

0

�

0

: (5.25)

Among general (normalized) Gaussian windows characterized by their ratio of the temporal and spec-

tral moment T

2




and F

2




as


(t) =

4

q

2F




=T




e

��(F




=T




)t

2

;

it can be easily shown that the minimum (5.25) is maximum for the matched Gaussian. This is

consistent with our usual matching rule introduced in Section 3.3.5, Eq. (3.20):

T




F




=

�

0

�

0

:

For the matched Gaussian window the deviation between the Weyl symbol and the STFT multiplier

function is given by

jM(t; f)� L

H

(t; f)j <

�

e

�

2

�

0

�

0

� 1

�

kS

H

k

1

:

5.4.6 Local Stability of the Weyl Symbol

As already mentioned, for a general LTV operator the Weyl symbol is not a stable representation in

the sense that boundedness of the operator is re
ected in the symbol and vice versa. Speci�c examples

can be found in [125]. However, in case of an underspread operator the Weyl symbol gives a locally

reliable information about the eigenvalue interval of an operator. One has the following theorem:

Theorem 5.4 The Weyl symbol of a self{adjoint underspread operator H with �

0

; �

0

satis�es:

�

�

�

supL

(0)

H

(t; f)� �

max

�

�

�

< �kS

H

k

1

;

�

�

�

inf L

(0)

H

(t; f)� �

min

�

�

�

< �kS

H

k

1

;

where � is de�ned as

� =

�

e

�

2

�

0

�

0

� 1

�

:

Proof: From Theorem 5.3 we know that an underspread operator with �

0

; �

0

can be realized via

multiplicative modi�cation of the STFT using a matched Gaussian window and the deviation of the

multiplier function M(t; f) from the Weyl symbol can be bounded as

jL

(0)

H

(t; f)�M(t; f)j �

�

e

�

2

�

0

�

0

� 1

�

kS

H

k

1

: (5.26)

In order to couple the range of the Weyl symbol to the eigenvalue interval we also need the operator's

short{time transfer function T

(
)

H

(t; f) as introduced in the previous chapter,

T

(
)

H

(t; f)

def

=

D

H;P

(t;f)




E

= hHM

f

T

t


 ; M

f

T

t


i :
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Analog to the proof of Theorem 5.3 one can show that the bias of the short{time transfer function

using a matched Gaussian is bounded as:

jL

(0)

H

(t; f)� T

(
)

H

(t; f)j �

�

1� e

�

�

2

�

0

�

0

�

kS

H

k

1

: (5.27)

Moreover, in the previous chapter we have seen that T

(
)

H

(t; f), M(t; f) are lower/upper Weyl{

Heisenberg operator symbols in the sense that:

�

min

� T

(
)

H

(t; f) � �

max

;

inf M(t; f) � �

k

� supM(t; f);

which by combination with (5.26), (5.27) and by recognizing that

1� e

�x

� e

x

� 1; x 2 R;

conclude the proof.

This result is in the spirit of various (much more sophisticated) mathematical work [238, 65, 180].

Moreover, the theorem shows that the Wigner{Ville spectrum of an underspread process is essentially

positive, an issue that has received interest in the engineering literature [118].

General HS operator. Theorem 5.4 can be easily generalized to non{selfadjoint Hilbert{Schmidt

operators. Let H be an underspread operator with spreading constants �

0

; �

0

, then the composite

operator

R = HH

�

is positive, self{adjoint and underspread with spreading constants 2�

0

; 2�

0

. The maximum eigenvalue

of R is the squared maximum singular value of H,

kRk

1

= �

max;R

= kHH

�

k

1

= kHk

2

1

= �

2

max;H

:

Theorem 5.4 says that

�

�

�

sup

�

�

�

L

(0)

R

(t; f)

�

�

�

� kRk

1

�

�

�

<

�

e

2��

0

�

0

� 1

�

kS

HH

�

k

1

:

and according to Theorem 5.1 one has

�

�

�

�

L

(0)

R

(t; f)�

�

�

�

L

(0)

H

�

�

�

2

�

�

�

�

< 2 sin (��

0

�

0

) kS

H

k

2

1

:

Combining these inequalities allows to bound the di�erence between the magnitude squared symbol

and the squared supremum norm of the operator:

�

�

�

�

sup

�

�

�

L

(0)

H

(t; f)

�

�

�

2

� kHk

2

1

�

�

�

�

<

�

e

2��

0

�

0

� 1

�

kS

HH

�

k

1

+ 2 sin (��

0

�

0

) kS

H

k

2

1

: (5.28)

The last two theorems are restricted to the case � = 0. However, they essentially hold for arbitrary

�. This �{invariance of the GWS for underspread operators is the topic of the next section.

5.4.7 Approximate �{Invariance

Starting with � = 0 any member of the family of generalized spreading functions can be obtained via

a unimodular multiplier function (B.15):

S

(�)

H

(�; �) = S

(0)

H

(�; �) e

�j2����

:

This relation immediately shows the �{invariance for LTI and LFI operators, because we have for LTI

operators � = 0 for S

(�)

H

(�; �) 6= 0 and for LFI operators � = 0 for S

(�)

H

(�; �) 6= 0. Indeed, LTI and

LFI operators are limit cases of underspread operators. For a general underspread operator one can

formulate the following �{invariance theorem (we remind the reader that we always require j�j � 1=2):
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Theorem 5.5 The generalized Weyl symbol of an underspread operator is approximately �{invariant.

In particular, for underspread operators H with the speci�ed spreading constants one has the following

L

1

{bounds valid for j�j � 1=2:

�

�

�

L

(�

1

)

H

� L

(�

2

)

H

�

�

�

< 2 sin (��

0

�

0

j�

1

� �

2

j) kS

H

k

1

; �

0

�

0

<

1

2

;

�

�

�

jL

(�

1

)

H

j

2

� jL

(�

2

)

H

j

2

�

�

�

< 2 sin (2��

0

�

0

j�

1

� �

2

j) kS

H

k

2

1

; �

0

�

0

<

1

4

:

For underspread Hilbert{Schmidt operators, the corresponding L

2

{bounds are given by:










L

(�

1

)

H

� L

(�

2

)

H










2

< 4 sin

2

(��

0

�

0

(�

1

� �

2

)) kHk

2

; �

0

�

0

<

1

2

;










jL

(�

1

)

H

j

2

� jL

(�

2

)

H

j

2










2

< 64�

0

�

0

sin

2

(8��

0

�

0

(�

1

� �

2

)) kHk

4

; �

0

�

0

<

1

16

:

This theorem allows to show the approximate equivalence of various classical de�nitions of a time{

varying spectrum for underspread processes (see Section 2.5.3) [212]. Just as discussed for Theorem

5.1, for trace class operators one has coarser but simpler L

1

{bounds:

�

�

�

L

(�

1

)

H

� L

(�

2

)

H

�

�

�

< 8��

2

0

�

2

0

j�

1

� �

2

jtr

p

H

�

H; �

0

�

0

<

1

2

;

�

�

�

jL

(�

1

)

H

j

2

� jL

(�

2

)

H

j

2

�

�

�

< 64��

3

0

�

3

0

j�

1

� �

2

jtr

2

p

H

�

H; �

0

�

0

<

1

4

:

Similarly, we have the following bounds for the L

2

{bounds for Hilbert{Schmidt underspread operators:










L

(�

1

)

H

� L

(�

2

)

H










2

< 4�

2

�

2

0

�

2

0

(�

1

� �

2

)

2

kHk

2

; �

0

�

0

<

1

2

;










jL

(�

1

)

H

j

2

� jL

(�

2

)

H

j

2










2

< 512�

2

�

3

0

�

3

0

(�

1

� �

2

)

2

kHk

4

; �

0

�

0

<

1

16

:

Proof: For the proof of the �rst L

1

{bound we use the integral triangle inequality as follows:

�

�

�

L

(�

1

)

H

� L

(�

2

)

H

�

�

�

=

�

�

�

�

�

�

Z

�

Z

�

n

S

(�

1

)

H

(�; �)� S

(�

2

)

H

(�; �)

o

e

j2�(�t��f)

d� d�

�

�

�

�

�

�

�

Z

�

Z

�

�

�

�

S

(0)

H

(�; �)

�

�

�

�

�

�

e

�j2����

1

� e

�j2����

2

�

�

�

d� d�

=

�

0

Z

�

0

�

0

Z

�

0

�

�

�

S

(0)

H

(�; �)

�

�

�

2 sin (���j�

1

� �

2

j) d� d�

< 2 sin (��

0

�

0

j�

1

� �

2

j) kS

H

k

1

;

where in the last step we have made use of the requirements �

0

�

0

< 1=2 in the following sense

max

j� j<�

0

;j�j<�

0

fsin (���j�

1

� �

2

j)g = sin (��

0

�

0

j�

1

� �

2

j) ;

which is always valid since:

��

0

�

0

j�

1

� �

2

j < �=2 j�

1

� �

2

j < 1:
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The proof of the second L

1

{bound goes along the same lines:
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=

�
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� �)
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o
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�
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�

�
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�
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�

1

Z

�

1

Z

�

2

Z

�

2

�

�

�
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(0)

H

(�

1
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1

)

�

�

�

�

�

�

S

(0)

H

(�

2
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2

)

�

�

�
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1

�

1

� �

2

�

2

)j�

1

� �

2
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1
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1
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2

d�

2
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0

�

0
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1

� �

2

j) kS

H

k

2

1

;

where we have used

max

j�

i

j<�

0

;j�

i

j<�

0

f�

1

�

1

� �

2

�

2

g = 2�

0

�

0

;

and the requirements �

0

�

0

< 1=4 and j�

1

� �

2

j < 1 such that

2��

0

�

0

j�

1

� �

2

j < �=2:

For the proof of the L

2

{bounds we need the unitarity of the spreading function:

Z

�

Z

�

jS

H

(�; �)j

2

d� d� = kHk

2

:

The proof of the �rst L

2

{bound is straightforward:
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2

;

where in the last step we have used the fact that �

1

� �

2

< 1 and �

0

�

0

< 1=2 with the reasoning

analogous to the proof of the L

1

{bound.
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In the proof of the second L

2

{bound we use the Schwarz inequality and proceed similarly to the

foregoing proof:
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2
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1

A
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=
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0

Z
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0
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Z
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0
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Z

�

0

Z

�
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�
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�

S
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H

(�

0
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)

�

�

�

2

4 sin

2

�
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0

+ �

0

� + ��)(�

1

� �

2

)

�

d� d� d�

0

d�

0

< 64�

0

�

0

sin

2

(8��

0

�

0

(�

1

� �

2

)) kHk

4

;

where in the last step we have used the spreading requirement �

0

�

0

< 1=16, which together with

max f��

0

+ �

0

� + ��g = 8�

0

�

0

;

subject to j� j < 2�

0

; j�

0

j < �

0

; j�j < 2�

0

; j�

0

j < �

0

;

and j�

1

� �

2

j < 1, implies

8��

0

�

0

j�

1

� �

2

j < �=2:

These �{invariance results show that many of the classical time{frequency parametrized operator

representations are essentially equal for underspread operators and it is a matter of convenience (ease

of a numerical implementation) which version of the generalized Weyl correspondence is used.

5.4.8 Approximate Eigenpairs

The optimum design of structured sets of approximate eigensignals was one of the main topics of the

previous chapters. More than once, we have observed that given the mere knowledge of the spread-

ing support of an operator, one has a time{frequency shift{covariant characterization of approximate

eigensignals. By covariance we mean that one can produce a manifold of approximate eigensignals

by time{frequency{shifting of an appropriate prototype. However, while we have presented both

optimum and low{cost design criteria for approximate eigensignals, we still have to investigate the

goodness of the approximation. We stress that it does not make sense to measure the deviation from

a true eigensignal (in e.g. L

2

{sense) because these true eigensignals are in general complicated, un-

structured signals. Moreover, determination of eigenfunctions is always tied to the determination of

the corresponding eigenvalue. For underspread operators we expect that when we shift an appropri-

ately localized prototype function to (t

0

; f

0

) it is just the value of the Weyl symbol at (t

0

; f

0

) which

determines the (approximate) eigenvalue:

H


(t

0

;f

0

)

?

= L

(�)

H

(t

0

; f

0

)


(t

0

;f

0

)
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Hence, we de�ne the L

2

{deviation from this idealized property to quantify the concept of approximate

eigensignals.

Theorem 5.6 Given an underspread operator H with �

0

; �

0

and a normalized prototype function 


which achieves appropriate localization in the sense that

jA




(�; �)� 1j�

[�2�

0

;2�

0

]

(�)�

[�2�

0

;2�

0

]

(�) � �




;

then, the time{frequency shifted versions 


(t;f)

and the corresponding values of the Weyl symbol

L

H

(t; f) form an approximate eigenpair in the sense that

kH


(t;f)

� L

H

(t; f)


(t;f)

k

2

< 2 sin(��

0

�

0

)kS

H

k

1

+ �




�

kS

H

�

H

k

1

+ 2kS

H

k

2

1

�

;

with 


(�;�)

(t) = 
(t� �)e

j2��t

.

Proof: Normalized prototype implies:

k
k = 1 () A




(0; 0) = 1:

The assumption of \appropriate localization" allows to split up the ambiguity function of the prototype

as

A




(�; �)� 1

def

= �




(�; �);

where, within the doubled underspread support, the magnitude of �




(�; �) is bounded by �




:

j�




(�; �)j�

[�2�

0

;2�

0

]

(�)�

[�2�

0

;2�

0

]

(�) � �




:

The ambiguity function of a time{frequency shifted version of the prototype function is then given by

(see (F.26)):

A




(t;f)

(�; �) = A




(�; �)e

�j2�(�t��f)

= (1 + �




(�; �)) e

�j2�(�t��f)

:

First, we estimate the di�erence between the quadratic form and the Weyl symbol:

�

�

�

D

H


(t;f)
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(t;f)

E

� L

H

(t; f)

�

�

�

=

�

�

�

D

S

H

; A




(t;f)

E
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H
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�
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=

�

�

�

�

�

�

�

0

Z
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0

�

0

Z
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0

S

H

(�; �)A
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(�; �)e

j2�(�t��f)

d� d� � L

H
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�

�

�

�

�

�

=

�

�

�

�

�

�

�

0

Z
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0

�

0

Z
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0

S

H
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(�; �)e
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d� d�

�

�

�

�

�

�

�

�

0

Z
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0

�

0

Z

��

0

jS

H

(�; �)�




(�; �)j d� d�

< �




kS

H

k

1

:
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Second, we estimate the di�erence between the output energy and the magnitude{squared Weyl sym-

bol, to this end we employ Theorem 5.1 and (C.11)

�

�

�

�










H


(t;f)










2

� jL

H

(t; f)j

2

�

�

�

�

=

�

�

�

D

S

H

�

H
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E

� jL

H

(t; f)j
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0
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0
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H

�

H

(�; �)A
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(�; �)e

j2�(�t��f)

d� d� � jL

H

(t; f)j

2

�

�

�

�

�
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�
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�

�

�

�

�

L

H

�

H
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0

Z

�2�

0
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0

Z

�2�

0

S

H

�

H
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�

�

�

�

�

�

�
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�
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�
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�
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+
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(�; �)j d� d�

< 2 sin��

0

�

0
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:

For the sake of a compact notation we introduce:

�

H;1

(t; f)

def

=

D

H


(t;f)
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(t;f)

E

� L

H

(t; f);

�

H;2

(t; f)

def

=










H


(t;f)










2

� jL

H

(t; f)j

2

:

We split up the L

2

{norm of the theorem via,

kx� yk

2

= kxk

2

� 2Re fhx; yig + kyk

2

and get:
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k
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2
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n

L

�

H
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D
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2
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�
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�

H

k

2

1
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H

(t; f)gj

�

:

Finally, we estimate the Weyl symbol by the L

1

{norm of the spreading function as follows:

jRe fL

H

(t; f)gj < jL

H

(t; f)j

=

�

�

�

�

�

�

Z

�

Z

�

S

H

(�; �)e

�j2�(�t��f)

d� d�

�

�

�

�

�

�

� kS

H

k

1

;

which concludes the proof.

An appropriately localized prototype function can be found by our usual matching rule:

T




F




=

�

0

�

0

:
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Error Norm

Overspread

(Fig.5.1)

Critical spread

(Fig. 5.2)

Underspread

(Fig. 5.3)

kL

GH

� L

G

L

H

k

kGkkHk

196 52 9:5

kGH�G
Hk

1

kGk

1

kHk

1

1:39 0:35 0:035

Table 5.1: Error norms corresponding to the experiments of Figs.5.1{5.3

As already pointed in Section 5.4.5, for a Gaussian prototype the matching rule obtains the optimum

duration/bandwidth in the sense of minimum �




. That is, given the matched Gaussian pulse:




0

(t) =

4

s

2�

0

�

0

e

��

�

0

�

0

t

2

;

we have (see (5.25)):

�




= 1� e

�

�

2

�

0

�

0

:

Such that the eigenpair deviation reduces to a bound approximately proportional to the square of the

operator's total spread (�

H

= 4�

0

�

0

):

kH
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H
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< 2��
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�

0

kS
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1

+
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�

0

�

0

��

kS
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+ 2kS

H

k

2

1

�
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�

2

�

2

H

tr

p

H

�

H

�

1 + tr

p

H

�

H

�

:

5.5 Numerical Experiments

The applicability of the symbolic calculus of underspread operators has already been demonstrated in

the previous chapter by the Wiener �lter example. We now consider the simple multiplicative symbol

calculus (\twisted product") for simply designed underspread, critical and overspread operators with

\down{chirp"/\up{chirp" structure, see the Figures 5.1{5.3. The twisted product of two operators is

de�ned by an obvious, three{step procedure consisting of: (i) computing the generalized Weyl symbols

of both operators, (ii) pointwise multiplication of the symbols, (iii) applying the inverse generalized

Weyl correspondence to this product. Based on the continuous Weyl{Heisenberg expansion one can

de�ne the twisted product formally by:

G
H

def

=

Z

t

Z

f

L

G

(t; f)L

H

(t; f)P(t; f)dt df;

where P(t; f) is the in�nitesimal prototype or its discrete{time counterpart.

In Table 5.1 we have listed the Hilbert{Schmidt norm and the standard operator norm (maximum

singular value) for the experiments corresponding to Figures 5.1{5.3.
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t

f

(a) (b) (c)

(d) (e) (f)

τ

ν

A=1

Figure 5.1: Symbolic calculus for overspread operators: (a) L

G

(t; f), (b) L

H

(t; f) (c) jL

GH

(t; f)j, (d)

jL

H

�

G

�

(t; f)j, (e) L

G

(t; f)L

H

(t; f), (f) jS

G+H

(�; �)j.

t

f

(a) (b) (c)

(d) (e)

τ

ν

(f)

A=1

Figure 5.2: Symbolic calculus for operators with critical spread.

t

f

(a) (b) (c)

(d) (e) (f)

τ

ν
A=1

Figure 5.3: Symbolic calculus for underspread operators.
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5.6 Summary

We have studied a subspace of the Hilbert space of Hilbert{Schmidt operators de�ned by a compactly

supported spreading function:

S

H

(�; �) = S

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�):

Such operators correspond to slowly time{varying systems with limited memory or to the covariance

kernel of a nonstationary process with limited temporal/spectral correlation width. The total spread

�

H

def

= 4�

0

�

0

;

is a fundamental parameter for the identi�cation (estimation), realization and interpretation of un-

derspread operators and their Weyl{Heisenberg symbols.

For bounded S

H

(�; �), we have shown that underspread operators and their generalized Weyl

symbols are asymptotically consistent with LTI operator theory. The total spread �

H

is the critical

parameter of all asymptotic results:

� Asymptotic validity of symbol calculus for jointly underspread operators:

kL

GH

� L

G

L

H

k

2

kGk

2

kHk

2

= O(�

3

H

):

� Asymptotic commutativity of jointly underspread operators:

kHG�GHk

2

kGk

2

kHk

2

= O(�

3

H

):

� Asymptotic normality:

kHH

�

�H

�

Hk

2

kHk

4

= O(�

3

H

):

� Asymptotic local stability:

�

�

�

sup jL

H

(t; f)j

2

� kHk

2

1

�

�

�

tr

2

p

H

�

H

= O(�

2

H

):

� Asymptotic �{invariance:

�

�

�

L

(�

1

)

H

(t; f)� L

(�

2

)

H

(t; f)

�

�

�

tr

p

H

�

H

= O(�

2

H

):

� Approximate equivalence with (matched window) STFT{multiplier symbol:

jM(t; f)� L

H

(t; f)j

tr

p

H

�

H

= O(�

2

H

):

� Approximate eigenpairs:
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= O(�

2
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):



Chapter 6

Conclusions

The main results are summarized and open problems for future research are pointed out.

6.1 Summary

The time{varying transfer function of an LTV system and the time{varying power spectrum of a

nonstationary process can be reduced to the same mathematical concept: One maps a linear operator

onto a function of time and frequency, a Weyl{Heisenberg symbol of the operator.

We have studied various de�nitions of such Weyl{Heisenberg (WH) symbols, in particular the

generalized Weyl symbol L

(�)

H

(t; f) which comprises Zadeh's time{varying transfer function (Kohn{

Nirenberg symbol) and the Weyl symbol. The (generalized) Weyl symbol of a correlation operator

is equivalent to the (generalized) Wigner{Ville spectrum of a nonstationary process and Zadeh's

time{varying transfer function is closely related to Priestley's evolutionary spectrum. The \naive"

interpretation of the WH symbols is given by the concept of a time{frequency{parametrized eigen-

value distribution (in the sense of generalizing the frequency{parametrized eigenvalue distributions of

translation invariant operators).

We have introduced a formal interpretation of the generalized Weyl symbol (GWS) in the form

of a continuous Weyl{Heisenberg expansion of a Hilbert{Schmidt (HS) operator (we suppress the

�{parametrization):

H =

Z

t

Z

f

L

H

(t; f)P

(t;f)

dt df with L

H

(t; f) =

D

H;P

(t;f)

E

; (6.1)

where P is an in�nitesimal prototype operator which does not admit a helpful physical interpretation

as it introduces arbitarily large time{frequency shifts (while our \naive" interpretation would require

a perfect \time{frequency localizator"). This has led to the conclusion that one has to restrict the

class of HS operators where the eigenvalue interpretation of the GWS works in an asymptotic sense.

The generalized spreading function S

H

(�; �) is the Fourier dual of the generalized Weyl symbol

leading to a decomposition similar to (6.1) based on the time{frequency shift operator

H =

Z

�

Z

�

S

H

(�; �)S

(�;�)

d� d� with S

H

(�; �) =

D

H;S

(�;�)

E

: (6.2)

The time{frequency shift operator S

(�;�)

admits a meaningful physical interpretation: It corresponds

to the time{delay and Doppler{shift as it appears, e.g., in any time{varying multipath environment.

Irrespective of the actual physical scenario, the spreading representation (6.2) holds for any HS op-

erator and it can be extended to certain important non{HS operators. The magnitude of S

H

(�; �)

is de�nition{independent and we have seen that particularly the support of S

H

(�; �) is helpful for

classifying \natural" and \synthetic" linear operators.

124
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We have studied operators with restricted spreading characterized by a limited support of the

spreading function S

H

(�; �):

S

H

(�; �) = S

H

(�; �)�

H

(�; �);

where �

H

(�; �) is a 0=1{valued indicator function. We have shown that based upon this indicator

function the generalized Weyl symbol can be rede�ned via a di�erent prototype operator

b

P:

L

H

(t; f) =

D

H;

b

P

(t;f)

E

; with S

b

P

(�; �)

def

= �

H

(�; �): (6.3)

Considering �

H

(�; �) as incomplete, realistic a priori knowledge about a nonstationary environment,

the prototype operator

b

P is matched to the nonstationary environment both in the abstract way of

minimum HS norm and in the concrete sense of conveying optimum estimators:

� In contrast to the in�nitesimal prototype P, the operator

b

P is (i) Hilbert{Schmidt and (ii) it does

not introduce arbitrarily large time{frequency shifts. Among all admissible prototype operators

(for which (6.1) holds true)

b

P is marked out by (i) minimum HS norm and (ii) minimum amount

of potential time{frequency shifts.

� In a usual time{varying spectrum estimation setup the optimum estimate can be formulated as

a quadratic form of the observation based on

b

P.

� In a usual system identi�cation setup the optimum unbiased estimator is given by a bilinear

form of the input/output observation in terms of

b

P.

In practice one has to consider �nite{rank approximations of the prototype operator. An optimum

rank{one reduction of

b

P leads to a, typically pulse{like, prototype signal 
(t) which is matched to

nonstationary environments for various di�erent setups:

� Optimum STFT/Gabor window for the representation of nonstationary processes.

� Matched STFT window for the linear �ltering of nonstationary processes.

� Optimum distortion free pulse for the transmission over a WSSUS channel (here �

H

(�; �) char-

acterizes the support of the channel's scattering function).

Operators with restricted spreading have been specialized to the case of a rectangular support:

�

H

(�; �) = �

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�);

where �

0

is the maximum time shift and �

0

is the maximum frequency shift. Based upon this de�nition

we have introduced as precised version of the classical underspread/overspread classi�cation of LTV

systems which has been originally introduced for the case of nonstationary processes: We call a

process/system underspread when �

0

�

0

� 1 and overspread in the converse case.

For underspread operators we have shown practically relevant results as follows:

� For jointly underspread operators the generalized Weyl symbol of the product operator is ap-

proximately equal to the product of the symbols:

L

H

1

H

2

(t; f) � L

H

1

(t; f)L

H

2

(t; f);

where the approximation gets better (both in L

2

and L

1

sense) with decreasing product �

0

�

0

.

This result shows in particular that it is the class of underspread environments where one can use

a time{varying power spectrum and a time{varying transfer function for applications involving

operator algebra (Wiener �lter, equalization, inverse �ltering, etc.).
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� For underspread operators the generalized Weyl symbol gets increasingly �{invariant with de-

creasing spreading product �

0

�

0

:

L

(�

1

)

H

(t; f) � L

(�

2

)

H

(t; f):

This result can be related to the longstanding discussion about the \optimum" de�nition of

a stochastic time{varying power spectrum: For the class of underspread processes (where the

notion of a time{varying power spectrum makes sense) all of the classical de�nitions (in particular

Priestley's spectrum and the Wigner{Ville spectrum) are essentially equivalent.

� The generalized Weyl symbol of an underspread operators is uniquely characterized by its sam-

ples on a rectangular grid (\matched grid") with constants characterized by

T

F

=

�

0

�

0

and TF =

1

4�

0

�

0

:

Sampling the symbol leads to discrete Weyl{Heisenberg expansion as follows:

H = TF

X

k

X

l

L

H

(lT;mF )

b

P

(lT;mF )

;

the discrete counterpart of (6.1). We have pointed out the consequences of this result for (i)

the estimation and optimum �ltering of underspread processes, (ii) the representation, identi�-

cation and realization of underspread LTV systems. Moreover, we have observed the intuitively

appealing fact that our \naive" eigenvalue interpretation starts to make sense for

TF = 1;

i.e., the critical density of WH{frames.

� For underspread environments the matching of a prototype signal (window, transmission pulse)

has been approximately reduced to the simple rule:

T




F




=

�

0

�

0

;

where T




and F




are the duration/bandwidth (de�ned via second order moments) of the proto-

type signal.

Any time{frequency shifted version of such a matched prototype signal is an approximate

eigensignal of the underspread operator and the generalized Weyl symbol determines the corre-

sponding eigenvalue:

H


(t;f)

� L

H

(t; f)


(t;f)

; with 


(t;f)

def

= S

(t;f)


:

6.2 Future Research

In what follows we list various open problems and potentially fruitful connections for future research:

� The asymptotic theory of underspread operators is conceptually equivalent to the asymptotic

relation between quantum mechanics and classical mechanics [359] or between wave optics and ge-

ometric optics. These asymptotics are utilized in mathematical physics by the so{called Wentzel{

Kramers{Brillouin (WKB) method (see [241, p.208] for the quantum mechanical context or [396,

p.307] for the wave propagation context). In order to illustrate this parallelism recall that the

basic idea of the underspread asymptotics can be formulated by the commutator of time and

frequency shift operator:

kM

�

T

�

�T

�

M

�

k

1

= kS

(�;�)

(1=2) � S

(�;�)

(�1=2)k

1

= 2 sin���:
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The analog result for the Schr�odinger representation of the Heisenberg group [125] is










R(�hp; q; 1=2h

2

pq)�R(�hp; q;�1=2h

2

pq)










1

= 2 sin�pqh

2

;

where h is Planck's constant. Hence, �� ! 0 is mathematically equivalent to h! 0 in so far as

the commutator of the fundamental building blocks (time and frequency shifts in our case, posi-

tion and momentum in the quantum context) approaches zero. But h! 0 characterizes exactly

the asymptotic correspondence between classical and quantum mechanics. However, while the

mathematical background is identical, the details are quite di�erent [359]. The WKB method

is used for the approximate, theoretical solution of eigenvalue problems involving (noncompact)

partial di�erential operators while our underspread theory is based on a subspace of Hilbert{

Schmidt operators in a way that is easily extended to a discrete, numerical setting. Notwith-

standing these fundamental di�erences, we feel that the parallelism with the WKB method is

certainly a promising direction for further investigations.

� One of the basic problems associated with our underspread de�nition (sharply restricted spread-

ing function) is the fact that jointly underspread operators do not establish an algebra, because

the twisted convolution enlarges the support of the spreading function just as a regular convo-

lution. One possible way to overcome this problem is by de�ning a truncated, twisted product

as:

G
H

def

=

X

l

X

m

L

G

(lT;mF )L

H

(lT;mF )

b

P

(lT;mF )

;

where

b

P is the matched prototype operator of the underspread environment. It is easy to see

that G
H de�nes a commutative algebra of jointly underspread operators. It is very likely that

this property comes at the cost of an increased approximation error (w.r.t. the natural operator

product GH) compared to the continuously de�ned twisted product.

� For the derivation of key results about underspread operators we have often used a short{time

Fourier transform (STFT) based on a (matched) Gaussian window. Such an STFT is closely

related to the Bargmann transform [175, 125]:

(Bx) (�)

def

= e

(�=2)j�j

2

e

�j2�tf=2

STFT

(
)

x

(t; f);

with


(t)

def

= 2

1=4

e

��t

2

and �

def

= t + jf:

For x 2  L

2

(R), Bx is an entire analytic function. Hence, we conjecture that via the Bargmann

transform one can learn more about the \inner symmetry" of time{frequency representations by

analytic function theory.

� This thesis was exclusively devoted to a continuous{time, L

2

(R) setup. However, we know that

all basic results essentially carry over to the �nite (periodic), discrete, and �nitely discrete case.

Instead of performing such a generalization in a piecemeal fashion (tedious computations leading

to almost predictable results), we suggest to de�ne underspread operators on locally compact

abelian (LCA) groups that enable a combined, abstract treatment of the standard engineering

setups [390, 155, 284].

� The use of generalized time{frequency sampling lattices is a natural extension of the Gabor

window matching theory (where the discussion was restricted to rectangular sampling grids).

We expect that given an underspread operator with elliptical spreading constraint, a hexago-

nal time{frequency sampling lattice leads to better performance in the sense of approximate

diagonalization. Just as stated for the previous point, the theory of LCA groups allows a

straightforward treatment of generalized (nonseparable) time{frequency sampling lattices.
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APPENDIX A: Linear Operator Theory

This appendix summarizes some facts of linear operator theory matched to the scope of this thesis.

With this summary we hope to give a reader with usual engineer's mathematical level the necessary

mathematical de�nitions to follow the main ideas. A comprehensive monograph about standard linear

operator theory (on engineer's level) is [252].

A.0.1 Representation of Linear Operators

A linear operator H maps an input signal x(t) onto an output signal (Hx) (t) in a way such that a

linear superposition law holds:

(H [�

1

x

1

+ �

2

x

2

]) (t) = �

1

(Hx

1

) (t) + �

2

(Hx

2

) (t); (A.1)

where �

1

and �

2

are two arbitrary complex numbers. Unique representation of H means implicit or

explicit knowledge of any input{output mapping x 7! Hx. With the fundamental property (A.1) in

mind it is clear that the explicit setup of all input{output mappings is highly redundant (this would

be necessary in the case of a general nonlinear operator). Once we know the output (Hx

0

)(t) for a

certain x

0

(t) we know the output for any scalar multiple �x

0

(t). In this work the linear operators

usually act on L

2

(R), where we can write any signal in terms of an orthonormal basis:

x(t) =

1

X

k=1

hx; u

k

i u

k

(t) with hx; u

k

i =

Z

t

x(t)u

�

k

(t)dt: (A.2)

The action of the operator on x(t) can be traced back to its action on the basis elements u

k

(t), where

we assume that the sum actually converges (the next section will provide the condition on H for the

convergence of (A.2)):

(Hx) (t) =

1

X

k=1

hx; u

k

i (Hu

k

) (t):

We can obtain an entirely discrete representation of H by expanding the output signal in terms of the

basis:

hHx; u

k

i =

1

X

k

0

=1

hx; u

k

0

i hHu

k

0

; u

k

i : (A.3)

Hence, we have a discrete representation of the operator H by the matrix H(k; k

0

) = hHu

k

0

; u

k

i,

provided that (A.2) converges.

However, the usual operator representation is by a continuous kernel h(t; s) in the form of an

integral operator:

(Hx) (t) =

Z

s

h(t; s)x(s)ds: (A.4)

The kernel is just the continuous counterpart of the above de�ned matrix H(k; k

0

), with the main

di�erence that now the representation is formally based on the continuously parametrized "basis" of

delta pulses:

h(t; t

0

) = (H�

t

0

) (t); with

Z

t

x(t)�

t

0

(t)dt = x(t

0

):
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A.0.2 Hilbert{Schmidt Operators

In the bulk of this work we restrict the discussion on operators with square{integrable kernel h(t; s):

Z

t

Z

s

jh(t; s)j

2

dt ds = kHk

2

<1: (A.5)

An operator that meets this requirement is called Hilbert{Schmidt (HS). The norm kHk

2

is called

Hilbert{Schmidt norm

1

and may be de�ned | without explicit use of an operator representation |

just in terms of the action of H onto an (arbitrary) orthonormal basis fu

k

g:

Z

t

Z

s

jh(t; s)j

2

dtds = kHk

2

=

1

X

k=1

kHu

k

k

2

: (A.6)

Hilbert{Schmidt operators always possess discrete representations in the form of a (potentially in�nite

dimensional) matrix H(k; k

0

) = hHu

k

0

; u

k

i. Once this is granted, the Hilbert{Schmidt norm of H is

just the Frobenius norm of H(k; k

0

). It is furthermore of practical importance that one can always

�nd �nite{rank approximations H

N

of a Hilbert{Schmidt operator H in a way such that

kH�

e

H

N

k

2

� � for some N <1: (A.7)

Thus by an appropriate choice of the basis fu

k

g in (A.3) we can represent a Hilbert{Schmidt operator

by a �nite{dimensional matrix with arbitrary good precision. This is of fundamental relevance for the

numerical simulation of such operators. Unfortunately, there exist technically important operators

that are not of HS{type, most prominently the linear time{invariant operators. The di�erences and

parallels in the treatment of HS{type and non{HS operators will be discussed in the following sections.

HS Operators as Elements of a Hilbert Space. In various applications of linear operators it

is useful to consider the operators as elements of a Hilbert space. This is particularly simple for

Hilbert{Schmidt operators, where one de�nes an inner product according to

hH;Gi

def

=

1

X

k=1

hHu

k

;Gu

k

i =

Z

t

Z

f

(H) (t; s) (G)

�

(t; s)dt ds: (A.8)

Here, fu

k

(t)g is an arbitrary orthonormal basis of L

2

(R). The norm induced by the inner product

(A.8) is indeed the Hilbert{Schmidt norm (see (A.5) for the de�nition). The linear map from the

kernel (H)(t; s) onto its operator H is thus an isometric isomorphism from L

2

(R

2

) onto the Hilbert

space of Hilbert{Schmidt operators.

A.0.3 Eigenvalue and Singular Value Decompositions

One of the key ideas in the study of linear operators is to split the rather complicated general input{

output relation into simpler \subsystems" in order to understand the behavior of the operator. One

way of obtaining such decompositions is to consider the special case of an eigensignal. An input signal

x(t) is called eigensignal of the operator H when it meets the following equation

(Hx) (t) = �x(t) (A.9)

i. e., the output signal (Hx) (t) is a weighted version of the input signal x(t); the (generally complex)

factor � is the corresponding eigenvalue.

1

In this respect, we deviate from the usual notation in the mathematical literature, where the operator norm is de�ned

as kHk

1

= supfkHxk : kxk = 1g. One has of course kHk

1

� kHk:
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Solution of (A.9) yields a manifold of eigensignals u

k

(t) and corresponding eigenvalues �

k

. The

properties of these eigenvalues allow to distinguish subclasses of linear operators.

Normal Operator. If the eigensignals u

k

(t) set up a complete orthonormal basis of L

2

(R) then the

operator is called normal. A usual, equivalent de�nition of a normal operator is given by the property

HH

�

= H

�

H; (A.10)

i. e., a normal operator commutes with its adjoint. (The adjoint of an operator with kernel h(t; s) has

the kernel h

�

(s; t), where the asterisk denotes complex conjugation.)

Complete solution of the eigenvalue problem yields a useful representation of a normal operator,

namely the spectral decomposition

h(t; s) =

1

X

k=1

�

k

u

k

(t)u

�

k

(s): (A.11)

Self{Adjoint Operator. If, additionally, the eigenvalues are real{valued, then the operator H is

self{adjoint. A self{adjoint operator is de�ned by the requirement:

H = H

�

: (A.12)

The self{adjoint operators represent a subclass of the normal operators.

Projection Operator. An important special case of a self{adjoint operator is the orthogonal pro-

jection operator which is marked out by being idempotent:

P

2

= P; and P = P

�

: (A.13)

The projection operator is in one{to{one correspondence to a linear signal space S. It provides the

formal solution of the fundamental problem of �nding that signal x

S

2 S which has the minimal

L

2

(R){distance to a given signal x =2 S:

(P

S

x) (t) = arg min

x

S

kx� x

S

k

2

: (A.14)

Note that the requirement for idempotency alone admits skew projections too. The eigenvalues of a

projection operator are either 0 or 1, the spectral decomposition is given by

(P) (t; s) =

N

X

k=1

u

k

(t)u

�

k

(s) =

N

X

k=1

(P

k

) (t; s); (A.15)

where N is the dimension of the corresponding signal space and fu

k

g is any orthonormal basis spanning

the corresponding signal space.

Having set up the notion of a projection operator we can reformulate the spectral decomposition

of a normal operator (A.11) as a weighted sum of projections:

h(t; s) =

1

X

k=1

�

k

P

k

; (A.16)

where the projection operators establish a so{called resolution of the identity,

I =

1

X

k=1

P

k

; P

k

P

l

= P

k

�

kl

: (A.17)

Important examples of (in�nite{rank) projections are the (ideal) band{limitation operator B

F

and

the time{limitation operator D

T

with kernels:

(B

F

) (t; s) =

sin (2�f(t� s))

�(t� s)

; (D

T

) (t; s) = �(t� s)�

[�T;T ]

(t): (A.18)
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Unitary Operator. A unitary operator preserves the norm (energy) of a signal, i.e.

kUxk

2

= kxk

2

: (A.19)

This property is equivalent to requiring

UU

�

= U

�

U = I; (A.20)

a unitary operator is thus normal and all eigenvalues are unimodular j�j = 1. An, in our context,

important example of a unitary operator is the time{frequency shift operator de�ned as

�

S

(�;�)

x

�

(t) = x(t� �)e

j2��t

; (A.21)

where the superscripts � and � denote the amount of time shift and frequency shift, respectively. The

(generalized) eigenfunctions of the time{frequency shift operators are frequency{shifted versions of

so{called chirp signals with chirp rate equal to

�

�

,

u

�

(t) = e

j2�(

�

2�

t

2

+�t)

; �

�

= e

j2�(

�

2

��)�

; � 2 R (A.22)

where �

�

are the corresponding eigenvalues and � 2 R.

Singular Value Decomposition. For a general HS operator the eigenvalue problem may not yield

a complete orthonormal basis of eigensignals. In this case, one has to study the eigenvalue problems

of the composite operators HH

�

and H

�

H [252]; these operators are HS and nonnegative self{adjoint,

and thus yield two complete orthonormal bases of so{called singular signals. The right singular signals

v

k

(t) are the eigensignals of HH

�

and the left singular signals u

k

(t) are the eigensignals of H

�

H. The

two composite operators have the same (positive, real{valued) eigenvalues whose square root are the

so{called singular values �

k

. This leads to a decomposition valid for any compact operator H,

h(t; s) =

1

X

k=1

�

k

u

k

(t)v

�

k

(s); (A.23)

the singular value decomposition, well{known in matrix theory. The Hilbert{Schmidt norm can be

expressed by the singular values:

1

X

k=1

�

2

k

= kHk

2

: (A.24)

Note that the singular value decomposition of a normal operator is closely related to the corre-

sponding spectral decomposition, one has

�

k

= j�

k

j v

k

(t) = e

�j argf�

k

g

u

k

(t);

where u

k

(t) are the eigensignals and �

k

are the eigenvalues of the normal operator. For a nonnegative

self{adjoint operator the left and right singular signals are identical and the singular value and spectral

decomposition are equivalent.

A speci�c example of a nonnormal HS operator is given by the cascade composition of the band{

limitation and time{limitation operator:

H = D

T

B

F

(A.25)

the left singular signals of H are the prolate spheroidal wave functions and the right singular signals

are just the Fourier dual, i.e., their Fourier transform is given by the prolate spheroidal wave functions

[267].

Operator Square Root. To a given positive{semide�nite, self{adjoint operator R one can de�ne a

square{root operator formally by:

H =

p

R () R = H

2

: (A.26)
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However, H is not uniquely de�ned because it is easy to see that given one speci�c H with R = H

2

,

any other operator de�ned as H

0

= HU with unitary U also satis�es (A.26). One usually assumes

that

p

R is self{adjoint and positive{semide�nite, which leads to a well{de�ned operator.

Trace Class Operators. The trace of a linear integral operator is de�ned as

trH

def

=

Z

t

(H) (t; t)dt: (A.27)

Operators with summable singular values, i.e.,

1

X

k=1

�

k

= tr

p

HH

�

= M <1: (A.28)

are called trace class. Trace class operators form a subset of Hilbert{Schmidt operators.

Inner Product of Self{Adjoint HS Operators. For two Hilbert{Schmidt operators H and G the

inner product is equal to the trace of the product of H and G

�

:

hH;Gi = tr fHG

�

g : (A.29)

This gives the following representation for the HS norm:

kHk

2

= tr fHH

�

g = tr fH

�

Hg (A.30)

A.0.4 Spectral Decomposition of Normal Non{HS Operator

Just as a formal completion we discuss the practically important case of normal operators whose kernel

is not square{integrable. In the context of this work there are two important examples:

� LTI operator. Linear time{invariant (LTI) operators are predominant in the engineering liter-

ature appearing either as LTI systems or as the correlation operator of a wide{sense stationary

process. The kernel of an LTI operator reduces to a one{dimensional function and its action is

a time{domain convolution:

h(t; s) =

^

h(t� s); () (Hx) =

Z

�

^

h(�)x(t� �)d�: (A.31)

� LFI operator. The Fourier dual of an LTI operator is the linear frequency{invariant operator

that appears as a linear modulation, time{domain windowing operator or corresponding to the

correlation kernel of nonstationary white noise; the kernel is given by

h(t; s) = m(t)�(t� s); () (Hx) = m(t)x(t): (A.32)

The generalized eigenvalues of an LTI or LFI operator form a continuous spectrum, and the sum-

mation of the spectral decomposition of HS operators (A.11) formally carries over to an integration,

h(t; s) =

Z

�

�(�)u

�

(t)u

�

�

(s)d�; (A.33)

where �

�

is the continuous eigenvalue spectrum and u

�

(t) is continuously parametrized \orthogonal

basis" of eigensignals (these are not in L

2

(R)). In the case of an LTI operator one can write,

h(t; s) =

Z

f

H(f)e

j2�ft

e

�j2�fs

df = F

�1

f!(t�s)

fH(f)g : (A.34)
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A.0.5 Analysis{Modi�cation{Synthesis Interpretation

The key advantage of the eigen/singular value decompositions (A.11) and (A.23) lies in the fact that

they allow to replace the rather nontransparent I{O{relation (4.3) by the more convenient analysis{

modi�cation{synthesis scheme. That means in particular, the action of a compact operator on the

input signal x(t) can be split up in three operations:

1. Analysis | expansion of the input signal x(t) into a weighted sum of the basis v

k

(t), the coe�-

cients c

k

are given by

c

k

= hx; v

k

i =

Z

t

x(t)v

�

k

(t)dt: (A.35)

2. Multiplicative Modi�cation | i. e., weighting of the coe�cients c(k) by the singular values �

k

of

the operator, according to

~c

k

= c

k

�

k

: (A.36)

3. Synthesis | summation of the modi�ed expansion yields the output signal

(Hx) (t) =

1

X

k=1

~c

k

u

k

(t): (A.37)

If the operator is regarded as a �lter, then the actual �ltering is performed in the second step; the

analysis and the synthesis step are based on unitary (energy{preserving) transforms. With the advent

of powerful digital signal processing facilities this concept has been realized in various applications.

In this work modi�cations of this concept are considered in the sense that one admits (theoretically

suboptimal but numerically e�cient) nonorthogonal Weyl{Heisenberg{structured bases in the analysis

and synthesis parts.

A.0.6 Unitary Equivalence

Two linear operator H and G are called unitarily equivalent whenever there exists a unitary operator

U such that:

G = UHU

�

, H = U

�

GU: (A.38)

Unitarily equivalent operators have an identical eigen/singular value distribution, while the eigen/-

singular signals are interrelated via the unitary transform U.

In the context of this thesis the following case of unitary equivalence is particularly important:

e

H = S

(�;�)

HS

(�;�)�

; (A.39)

where S

(�;�)

is the time{frequency shift operator as de�ned in (A.21). The spectral decomposition of

e

H is characterized by identical singular values as the original operator H, while the singular signals

are time{frequency shifted versions of the singular signals of H:

(H) (t; s) =

1

X

k=1

�

k

u

k

(t)v

�

k

(s) )

�

e

H

�

(t; s) =

1

X

k=1

�

k

~u

k

(t)~v

�

k

(s) (A.40)

with

~u

k

(t) =

�

S

(�;�)

u

k

�

(t) = u

k

(t� �)e

j2��t

and ~v

k

(t) =

�

S

(�;�)

v

k

�

(t) = v

k

(t� �)e

j2��t

:
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APPENDIX B: Generalized Spreading Function

Time{delay and (narrowband) Doppler shift are the predominant energy preserving (unitary) e�ects

of a time{varying multipath wave propagation channel. This is the context where the name spreading

function (short for delay{Doppler spread function) was introduced. In quantum mechanics, time{shift

and frequency{shift operators play an important role in so far as they establish representations of the

Heisenberg group. Before we discuss the de�nition of the generalized spreading function, we point

out the basic mathematical problem that leads to the parametrization of the generalized spreading

function.

The time|shift (translation) operator, de�ned by

(T

�

x) (t) = x(t� �)

may be seen as the fundamental, unitary building block of linear time{invariant operators in the sense

that

Hx =

Z

�

�

h(�)T

�

x d�;

where

�

h(�) is the impulse response (convolution kernel) of H.

Time{varying operators may also cause frequency shifts, de�ned by:

(M

�

x) (t) = x(t)e

�j2��t

;

where, in engineering contexts, M

�

is often called modulation operator.

Time shift operators and frequency shift operators, respectively, form a commutative group corre-

sponding to the additive group on the real line:

T

�

1

T

�

2

= T

�

2

T

�

1

= T

�

1

+�

2

; (B.1)

M

�

1

M

�

2

= M

�

2

M

�

1

= M

�

1

+�

2

: (B.2)

However, the time{shift operator and the frequency{shift operator do not mutually commute:

T

�

M

�

= M

�

T

�

e

�j2���

;

i.e., they commute only up to an unimodular factor. This causes fundamental complications, (i)

time{frequency shift operators do not represent the additive group on R � R:

T

�

1

+�

2

M

�

1

+�

2

6= T

�

1

M

�

1

T

�

2

M

�

2

; (B.3)

and (ii) in the de�nition of a unitary, time{frequency shift operator one has to admit at least two

natural de�nitions:

S

(�;�)

(1=2)

def

= M

�

T

�

;

S

(�;�)

(�1=2)

def

= T

�

M

�

:

However, by splitting up the time shift and the frequency shift one can de�ne more general versions of

a time{frequency shift operator, these various versions di�er only by an unimodular factor. We de�ne

a general �{parametrized time{frequency shift operator by:

�

S

(�;�)

(�)x

�

(t)

def

= x(t� �)e

j2��t

e

j2���(��1=2)

: (B.4)

Alternatively, one may de�ne the general shift operator by using the following split{up:

S

(�;�)

(�) = M

�(1=2+�)

T

�

M

�(1=2��)

= T

�(1=2��)

M

�

T

�(1=2+�)

:
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For arbitrary, �xed �, the time{frequency shift operators do not form a 2D group as indicated in

(B.3). However, the time{frequency shift operators are closely related to the 3D Weyl{Heisenberg

group which is de�ned by the following group law:

(�; �; �)� (�

0

; �

0

; �

0

)

def

=

�

� + �

0

; � + �

0

; � + �

0

+

1

2

(��

0

� ��

0

)

�

:

The unitary Schr�odinger representation of the Weyl{Heisenberg group is de�ned as [125]

(R(�; �; �)x) (t)

def

= x(t + �)e

j2�(�+�t+

1

2

��)

: (B.5)

And, in fact, one can view our �{parametrized time{frequency shift operator as a proper subset of

the Schr�odinger representation where the parameter � appears in the third coordinate as follows:

S

(�;�)

(�) = R(��; �; ���):

This shows that the time{frequency shift operators carry much of the beautiful symmetry of the

Weyl{Heisenberg group. In representation theory one calls such a family of unitary operators with

\hidden group structure" projective representation [50] whenever one has a \quasi{homomorphism"

in the form

H(x)H(y) = c(x; y)H(x + y); (B.6)

where H(x) is a parametrized family of unitary operators and c(x; y) is an unimodular factor. In the

context of this work there are two cases where the hidden group structure of the time{frequency shift

operator comes out with striking consequences:

� For time{frequency periodic operators with TF = 1=n (see (B.31)) the time{frequency shift

operators form a commutative subgroup of the Weyl{Heisenberg group.

� Time{frequency shifting of operators in the sense of their symbols (see (C.15)) can be considered

as the action of a tensor product of time{frequency shift operators. It is easy to see that such a

tensor product is isomorphic to the additive group on R � R.

The case � = 0 corresponds to the Weyl correspondence and it is indeed historically correct to put

our (�; �){domain formula before the (t; f){domain formulas (nowadays it is more natural to de�ne

the Weyl correspondence in the (t; f){domain based on the Wigner distribution, see Appendix C).

Among the general versions of a time{frequency shift operator Weyl's symmetrical time{frequency

shift operator is marked out by various symmetry properties:

� Taking the adjoint leads to an inverse shift with identical unimodular factor:

S

(�;�)�

(0) = S

(��;��)

(0):

This is not true for any other de�nition of the time{frequency shift operator. For � = 1=2 one

has:

S

(�;�)�

(1=2) = S

(��;��)

(�1=2):

� One may obtain Weyl's operator by an in�nitesimal split up of the time and frequency shifts (in

the sense of a skew shift that follows the line between (0; 0) and (�; �)):

S

(�;�)�

(0)

def

= lim

N!1

�

N

n=1

T

�

�

N

�

M

�

�

N

�

= lim

N!1

�

N

n=1

M

�

�

N

�

T

�

�

N

�

:
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� Weyl's original derivation was based on an intuitive argument based on exponential operators

[125, p.79], i.e., one can formally de�ne

S

(�;�)�

(0)

def

= e

j2�(�F��T)

(B.7)

where F is essentially a di�erential operator,

(Fx) (t) =

1

2j�

dx

dt

;

and T is a speci�c multiplication operator,

(Tx) (t) = tx(t):

Weyl's essential line of reasoning was to replace the elementary functions of the symplectic

Fourier transform (as a building block for 2D functions),

c(�; �) = e

j2�(�f��t)

by an operator as a building block for linear operators. Weyl suggested to do this in a canonical

way in so far as time t can be interpreted as the spectrum of the operator T and frequency f

can be interpreted as the spectrum of the operator F, i.e.,

f 7! F

t 7! T

+

c(�; �) 7! S

(�;�;0)

(Recall that the essential idea of a symbolic calculus is to replace the calculus of operators by

the calculus of their spectra.)

After this mathematical introduction we return to the basic de�nition of a spreading function. The

amount of potential time and frequency shifts caused by a linear operator H can be speci�ed by the

asymmetrical spreading function (also known as delay{Doppler{spread function [334]

S

(1=2)

H

(�; �)

def

=

Z

t

h(t; t� �)e

�j2��t

dt : (B.8)

The asymmetrical spreading function establishes an in�nitesimal decomposition of H into � = 1=2{

type time{frequency shift operators:

H =

Z

�

Z

�

S

(1=2)

H

(�; �)S

(�;�)

(1=2)d�d�: (B.9)

The classical asymmetrical spreading function corresponds to the Kohn{Nirenberg calculus. How-

ever, as pointed out, there is no mathematical (nor physical) reason to prefer the � = 1=2 version of

the time{frequency shift operator. Hence, we de�ne a generalized spreading function (GSF) as:

S

(�)

H

(t; f)

def

=

Z

t

h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2��t

dt; (B.10)

which, for � = 0 gives the recently introduced symmetrical spreading function [205].

Following is a list of relevant properties and relations:
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1. Inner Product De�nition. With the inner product de�ned as (A.8) we can write the GSF

formally as:

S

(�)

H

(�; �) =

D

H;S

(�;�)

(�)

E

: (B.11)

The spreading function of the time{frequency shift operator is formally given by a two{dimensional

delta distribution:

S

(�)

S

(�

0

;�

0

)

(�)

(�; �) = �(� � �

0

)�(� � �

0

): (B.12)

2. Inversion. The inversion formula is given by:

h(t; s) =

Z

�

S

(�)

H

(t� s; �)e

j2��[(1=2+�)t+(1=2��)s]

d�: (B.13)

3. Interrelation with GWS. The GSF is in Fourier correspondence to the generalized Weyl

symbol:

S

(�)

H

(�; �) =

Z

t

Z

f

L

(�)

H

(t; f)e

�j2�(�t��f)

dt df = F

t!�

F

�1

f!�

fZ

H

(t; f)g : (B.14)

4. Bifrequency Domain De�nition. The bifrequency function B

H

(f; s) is de�ned as the kernel

of an integral operator corresponding to the action of H on the frequency domain representations

of the input and the output signal:

(FHx) (f) =

Z

s

B

H

(f; s)X(s)ds:

By the nature of the Fourier dualism, the bifrequency{domain de�nition of the GSF is struc-

turally similar to the time{domain de�nition:

S

(�)

H

(�; �) =

Z

f

B

H

�

f +

�

1

2

� �

�

�; f �

�

1

2

+ �

�

�

�

e

j2�f�

df:

5. Mutual Interrelation. The relation between the various members of the GSF is given by the

multiplication by an unimodular function:

S

(�

1

)

H

(�; �) = S

(�

2

)

H

(�; �)e

�j2���(�

1

��

2

)

: (B.15)

Hence, the magnitude of S

(�)

H

(�; �) is �{invariant

jS

(�

1

)

H

(t; f)j

2

= jS

(�

2

)

H

(t; f)j

2

: (B.16)

6. Bilinear Form. The bilinear form can be written as

hHx; yi =

D

S

(�)

H

; A

(�)

y;x

E

: (B.17)

where A

(�)

y;x

(�; �) is the generalized cross{ambiguity function (see (F.19)).

7. Unitarity. The GSF preserves the inner product of two HS operators H,G:

hH;Gi =

D

S

(�)

H

; S

(�)

G

E

; (B.18)

as a consequence, we have for the HS norm:

Z

�

Z

�

�

�

�

S

(�)

H

(�; �)

�

�

�

2

d� d� = kHk

2

; (B.19)
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8. Spectral Decomposition. The GSF of a HS operator can be written in terms of the generalized

cross{ambiguity functions of the singular signals

S

(�)

H

(�; �) =

1

X

k=1

�

k

A

(�)

u

k

;v

k

(�; �): (B.20)

In the origin, the GSF equals the operator's trace:

S

(�)

H

(0; 0) = trH; (B.21)

which is the Fourier{dual property of the GWS's \trace formula" (C.14). Sometimes useful is

the following upper bound

�

�

�

S

(�)

H

(�; �)

�

�

�

�

1

X

k=1

�

k

= tr

p

H

�

H: (B.22)

9. Adjoint Operator. The generalized spreading function of the adjoint operator is given by:

S

(�)

H

�

(�; �) = S

(�)�

H

(��;��)e

�j4����

; (B.23)

the symmetrical spreading function is marked out by the fact that

S

(0)

H

�

(�; �) = S

(0)�

H

(��;��): (B.24)

Note, that (B.23) implies:

�

�

�

S

(�)

H

�

(�; �)

�

�

�

=

�

�

�

S

(�)

H

(��;��)

�

�

�

: (B.25)

10. Positive Operator. The GSF of a self{adjoint, positive operator takes on its maximum in the

origin:

�

�

�

S

(�)

H

(0; 0)

�

�

�

2

�

�

�

�

S

(�)

H

(�; �)

�

�

�

2

: (B.26)

11. LTI Operator. A linear time{invariant (LTI) operator does not introduce any frequency{shift

of the input signal; this is re
ected in the GSF which is ideally concentrated on the �{axis:

S

(�)

H

(�; �) = �(�)h(�): (B.27)

12. LFI Operator. Linear frequency{invariant operators are dual to the LTI operators and do not

introduce any time{shift, accordingly, the GSF does not show any spread into the direction of �

S

(�)

H

(�; �) = M(�)�(�): (B.28)

13. Time{Frequency Shifting. We de�ne time{frequency shifting of operators by

H

(t;f)

= S

(t;f)

HS

(t;f)�

;

where S

(t;f)

is an arbitrary version of a time{frequency shift operator. The generalized spreading

function of such a time{frequency shifted operator is a modulated version of the original operator:

S

(�)

H

(t;f)

(�; �) = S

(�)

H

(�; �)e

�j2�(�t��f)

: (B.29)
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14. Time{Varying Tapped Delay Line Operator. The time{varying tapped delay line is a

popular, relatively simple model for time{varying multipath propagation channel, it is de�ned

by

h(t; s) =

N

X

k=1

m

k

(t)�(t� s� kT ):

Its spreading function is distribution valued, it is ideally concentrated on T{spaced lines parallel

to the �{axis :

S

(�)

H

(�; �) =

N

X

k=1

�(� � kT )M

k

(�)e

�j2��kT (��1=2)

;

with M

k

(�) = (Fm

k

) (�).

15. Periodically Time{Varying Operator. The generalized spreading function of a periodically

time{varying operator with the kernel property h(t; t

0

) = h(t + lT; t

0

+ lT ), l 2 Z is separable

into delta{pulses in frequency direction at the multiples of the fundamental frequency 1=T and

into continuous functions of � :

S

(�)

H

(�; �) =

X

n

�

(�)

n

(�)�(� �

n

T

) (B.30)

with

�

(�)

n

(�) =

1

T

T

Z

0

h(t + (1=2 � �)�; t� (1=2 + �)�)e

�j2�

n

T

t

dt:

16. Time{Frequency Periodic Operator. We de�ne time{frequency periodic operators by

HS

(lT;mF )

= S

(lT;mF )

H; l;m 2 Z (B.31)

The spreading function of such a time{frequency periodic operator is ideally concentrated on a

dual grid:

S

(�)

H

(�; �) =

X

l

X

m

�

(�)

l;m

�

�

� �

l

F

�

�

�

� �

m

T

�

; (B.32)

where the coe�cients can always be de�ned as samples of the spreading function of a speci�c

prototype operator P

�

(�)

m;l

=

1

TF

S

(�)

P

�

l

F

;

m

T

�

;

which is de�ned by (provided that this sum makes sense)

H =

X

l

X

m

S

(lT;mF )

PS

(lT;mF )�

:

In the context of the Gabor expansion and Weyl{Heisenberg frames, (B.32) is known as Janssen

representation of the frame operator.

17. Underspread Operators. Given an operator whose GSF support lies inside a centered rect-

angle:

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�);

we call the operator underspread when 4�

0

�

0

� 1 and overspread in the converse case.

18. Operator Composition. Of key interest in the study of underspread operators is the expression

for the spreading function of the composite operators:

S

(�)

GH

(�; �) =

Z

�

0

Z

�

0

S

(�)

G

(�

0

; �

0

)S

(�)

H

(� � �

0

; � � �

0

)e

�j2�f�

0

�(�+1=2)+��

0

(��1=2)�2�

0

�

0

�g

d�

0

d�

0

;

(B.33)

this relation is known as twisted convolution [125].
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APPENDIX C: Generalized Weyl Correspondence

The generalized Weyl correspondence has been introduced in [204] as the formal uni�cation of the

classical Weyl correspondence [369, 125] and the more recent Kohn{Nirenberg correspondence [203,

125].

The Weyl symbol of an operator H with kernel h(t; s) is de�ned as

L

H

(t; f)

def

=

Z

�

h

�

t +

�

2

; t�

�

2

�

e

�j2�f�

d�;

where the operator acts as (Hx)(t) =

R

s

h(t; s)x(s)ds. The map H 7! L

H

(t; f) is called Weyl corre-

spondence [10, 11, 12].

The Kohn{Nirenberg symbol [203, 125] or, equivalently, Zadeh's time{varying transfer function

[386] is de�ned as

Z

H

(t; f)

def

=

Z

�

h(t; t� �)e

�j2�f�

d�:

Both the Weyl symbol L

H

(t; f) and the Kohn{Nirenberg symbol Z

H

(t; f) establish a unitary repre-

sentation of Hilbert{Schmidt (HS) operators

2

, they share a number of common properties and provide

a largely parallel concept for Weyl{Heisenberg operator representation. The generalized Weyl symbol

(GWS) is an �{parametrized family of unitary operator representations de�ned as

L

(�)

H

(t; f)

def

=

Z

�

h

�

t +

�

1

2

� �

�

�; t�

�

1

2

+ �

�

�

�

e

�j2�f�

d�; (C.1)

it gives the Weyl symbol in particular for � = 0 and the Kohn{Nirenberg symbol for � = 1=2. The

parameter � comes up more naturally in the spreading domain along with the nonuniqueness of the

time{frequency shift operator (see Appendix B).

The basic mathematical interpretation of the generalized Weyl symbol may be phrased as time{

frequency parametrized \eigenvalue distribution". When H is a linear time{varying system then, in

engineering terms, we may interpret the symbol as time{varying transfer function. When H is equal

to a (positive semide�nite) correlation operator R

x

then the symbol is equivalent to the generalized

Wigner{Ville spectrum [121],

L

(�)

R

x

(t; f) = EW

(�)

x

(t; f);

which is a classical de�nition of a time{varying power spectrum.

Following is a list of important properties and relations:

1. Inversion. The inversion formula is given by:

h(t; s) =

Z

f

L

(�)

H

��

1

2

+ �

�

t +

�

1

2

� �

�

s; f

�

e

j2�f(t�s)

df: (C.2)

2. Interrelation with Spreading Function. The GWS is the (symplectic) Fourier transform of

the generalized spreading function (for the de�nition of the spreading function see Appendix B)

L

(�)

H

(t; f) =

Z

�

Z

�

S

(�)

H

(�; �)e

j2�(�t��f)

d� d� = F

�1

�!t

F

�!f

n

S

(�)

H

(�; �)

o

:

2

See Appendix A for the basic de�nitions of linear operator theory.



GENERALIZED WEYL CORRESPONDENCE 141

3. Bifrequency Domain De�nition. In terms of the bifrequency function B

H

(f; s) (see (4.4)),

the GWS is given by

L

(�)

H

(t; f) =

Z

�

B

H

�

f +

�

1

2

� �

�

�; f �

�

1

2

+ �

�

�

�

e

j2�t�

d�:

4. Unitarity. The GWS preserves the inner product of the kernels g(t; s) and h(t; s) of two HS

operators G and H,

hg; hi =

D

L

(�)

G

; L

(�)

H

E

= hG;Hi : (C.3)

As a consequence, the L

2

{norm of the GWS is just the HS norm (see (A.5)) of the corresponding

operator:

Z

t

Z

f

�

�

�

L

(�)

H

(t; f)

�

�

�

2

dt df =










L

(�)

H

(t; f)










2

= kHk

2

: (C.4)

5. LTI Operator. For a linear time{invariant operator with convolution type kernel h(t; s) =

�

h(t� s) the GWS gives the usual transfer function (Fourier transform of the operator's impulse

response):

L

(�)

H

(t; f) = H(f) = F

(t�s)7!f

�

h(t� s): (C.5)

6. LFI Operator. In the dual case of a linear, frequency{invariant operator (i.e., multiplication

operator) with distribution type kernel h(t; s) = �(t�s)m(t) the GWS is frequency independent:

L

(�)

H

(t; f) = m(t): (C.6)

7. Periodically Time{Varying Operator. A periodically time{varying linear operator com-

mutes with time{shifts that are multiples of a time{period T :

HS

(lT;0)

= S

(lT;0)

H; l 2 Z:

This is equivalent with the following requirement for the kernel of H:

h(t; s) = h(t + lT; s + lT ):

The GWS of such an operator is periodic w.r.t. time:

L

(�)

H

(t; f) = L

(�)

H

(t + lT; f): (C.7)

8. Time{Frequency Periodic Operator. We de�ne time{frequency periodic operators by

HS

(lT;mF )

= S

(lT;mF )

H;

where T is the time period, F is the frequency period and l;m 2 Z. The GWS of such a

time{frequency{periodic operator is doubly periodic

L

(�)

H

(t; f) = L

(�)

H

(t + lT; f +mF ): (C.8)

Moreover, given two time{frequency periodic operators H,G and either one of the following

assumptions:

� TF =

1

n

, n 2 N, and j�j = 1=2
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� TF =

1

2n

, n 2 N, and � = 0

then, one has validity of the perfect symbol calculus:

L

(�)

H

(t; f)L

(�)

G

(t; f) = L

(�)

HG

(t; f):

Such time{frequency periodic operator arise as (linear combinations of) Weyl{Heisenberg frame

operators de�ned as (
(t) is the prototype):

M




def

=

X

m

X

l

S

(lT;mF )

P




S

(lT;mF )�

with (P




) (t; s) = 
(t)


�

(s):

For the TF = 1 (critical sampling) the Kohn{Nirenberg symbol is essentially equivalent to the

magnitude{squared Zak transform of the prototype 
:

L

(1=2)

M




(t; f) = T jZ




(t; f)j

2

;

where the Zak transform [388, 175, 179, 393, 158] is de�ned as

Z




(t; f) =

X

l


(t + lT )e

�j2�flT

:

The Zak transform is also known as Weil{Brezin transform [125].

9. Generalized Wigner Distribution. The GWS of a rank{one projection operator P

x

is just

the generalized Wigner distribution of the eigensignal

L

(�)

P

x

(t; f) = W

(�)

x

(t; f); with (P

x

) (t; s) = x(t)x

�

(s): (C.9)

10. Spectral Decomposition. The GWS of a HS operator can be expanded into a singular{value

weighted sum of cross Wigner distributions

L

(�)

H

(t; f) =

1

X

k=1

�

k

W

(�)

u

k

;v

k

(t; f); (C.10)

where the weights �

k

� 0 are the singular values, and the orthonormal bases fu

k

(t)g and fv

k

(t)g

are the left and right singular signals of the operator.

11. Adjoint Operator. The GWS of the adjoint operator can be obtained as

L

(�)

H

�

(t; f) = L

(��)�

H

(t; f); (C.11)

for the Weyl symbol in particular we thus have

L

(0)

H

�

(t; f) = L

(0)�

H

(t; f); (C.12)

which shows that, for self{adjoint operators, L

(0)

H

(t; f) is real{valued.

12. Marginals. The time and frequency marginals are �{invariant,

Z

t

L

(�)

H

(t; f)dt = B

H

(f; f);

Z

f

L

(�)

H

(t; f)df = h(t; t); (C.13)

where B

H

(f; f

0

) is the bifrequency function. Given a HS operator, the total integral of the GWS

equals the operator's trace, the so{called \trace formula":

Z

t

Z

f

L

(�)

H

(t; f)dtdf =

1

X

k=1

�

k

hu

k

; v

k

i = trH: (C.14)
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13. Finite Support Symbol. Let D be a time{limitation operator de�ned by

L

(�)

D

(t; f) = �

[�t

0

;t

0

]

(t)

and B its dual, a band{limitation operator with symbol

L

(�)

B

(t; f) = �

[�f

0

;f

0

]

(f)

then, given an arbitrary HS operator H one has the following �nite support properties

L

(�)

DHD

(t; f) = �

[�t

0

;t

0

]

(t)L

(�)

DHD

(t; f)

L

(�)

BHB

(t; f) = �

[�f

0

;f

0

]

(f)L

(�)

BHB

(t; f)

It should be emphasized that, for this to hold, our usual requirement j�j � 1=2 is necessary (it

is not necessary for most other properties of the GWS).

14. Convolution{Product/Product{Convolution Operators. Given an LTI operator M and

an LFI operator H de�ned by

L

(�)

M

(t; f) = m(t);

L

(�)

H

(t; f) = H(f);

the combinations are known as convolution{product operator MH and product{convolution

operator HM [261]. The GWS of these speci�c class of operators does not generally lead to a

separable symbol. However, for speci�c choices of � one has:

L

(1=2)

HM

(t; f) = m(t)H(f);

L

(�1=2)

MH

(t; f) = m(t)H(f);

which, in case of band{limitation and time{limitation operators can be specialized to (also see

the previous discussion on support properties):

L

(1=2)

BD

(t; f) = �

[�t

0

;t

0

]

(t)�

[�f

0

;f

0

]

(f);

L

(�1=2)

DB

(t; f) = �

[�t

0

;t

0

]

(t)�

[�f

0

;f

0

]

(f):

15. Time{Frequency Shift{Covariance. A translation of the GWS corresponds to a respective

time{frequency shift of the singular signals, while the singular values remain constant:

L

(�)

H

(�;�)

(t; f) = L

(�)

H

(t� �; f � �) () H

(�;�)

= S

(�;�)

HS

(�;�)�

; (C.15)

where S

(�;�)

is an arbitrary combination of a time{shift with lag � and frequency shift with lag

�.

16. Continuous Weyl{Heisenberg Expansions. The GWS leads to a formal expansion of a HS

operator into a continuous superposition of time{frequency shifted versions of an in�nitesimal

prototype operator:

H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�)dt df (C.16)
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generally valid for the �{dependent non{HS prototype operator de�ned by

L

(�)

P

(t; f) = �(t)�(f): (C.17)

For the most prominent choices of �, the in�nitesimal prototypes act as follows

� For � = 1=2, P

(t

0

;f

0

)

is ideally frequency selective and the output is ideally temporally

localized:

�

P

(t

0

;f

0

)

x

�

(t) = �(t� t

0

)X(f

0

)e

j2�f

0

t

0

:

� For � = �1=2, one has ideal frequency concentration on the range and ideal temporal

concentration on the domain:

�

P

(t

0

;f

0

)

x

�

(t) = e

j2�f

0

t

x(t

0

)e

�j2�f

0

t

0

:

� For the speci�c case � = 0 the prototype operator acts in a highly symmetric way as a

\time{frequency point mirror":

�

P

(t

0

;f

0

)

x

�

(t) = 2x(2t

0

� t)e

j2�2f

0

(t�t

0

)

;

�

FP

(t

0

;f

0

)

x

�

(f) = 2X(2f

0

� f)e

j2�2t

0

(f

0

�f)

:

Whenever the operator at hand satis�es a sharp spreading constraint of the form

S

(�)

H

(�; �) = S

(�)

H

(�; �)�

H

(�; �); (C.18)

where �

H

(�; �) is an indicator function, then the prototype operator is HS and given by:

S

(�)

P

�

(�; �) = �

H

(�; �):

17. Discrete Weyl{Heisenberg Expansions. When we specialize (C.18) to a rectangular shape

de�ned by

�

H

(�; �) = �

[��

0

;�

0

]

(�)�

[��

0

;�

0

]

(�);

then the sampling theorem leads to a discrete Weyl{Heisenberg expansion of the form:

H =

X

l

X

m

L

(�)

H

(lT;mF )P

(lT;mF )

(�); (C.19)

where the symbol of the prototype operator P(�) is given by a 2D sinc{type kernel:

L

(�)

P

(t; f) =

sin(2��

0

t) sin(2��

0

f)

4�

2

�

0

�

0

tf

;

and we have a \discrete trace formula":

X

l

X

m

L

(�)

H

(lT;mF ) =

1

TF

trH:

18. Input{Output Relations. For j�j = 1=2, the GWS can be essentially interpreted as kernel

of an integral operators which maps from the time/frequency domain of the input signal to fre-

quency/time domain of the output signal (x(t); y(t) are the input/output signal and X(f); Y (f)

their Fourier transforms) :

y(t) =

Z

f

L

(1=2)

H

(t; f)X(f)e

j2�ft

df;

Y (f) =

Z

t

L

(�1=2)

H

(t; f)x(t)e

�j2�ft

dt:



APPENDIX D: TIME{VARYING SPECTRAL ESTIMATION 145

APPENDIX D: Time{Varying Spectral Estimation

In this appendix we derive closed form expressions for the bias and variance regarding the estimation

of the expectation of a general real{valued, quadratic time{frequency shift{invariant signal represen-

tation. We assume a noisy observation of a circular complex, nonstationary Gaussian process with

statistically independent circular complex, stationary white Gaussian noise. We specialize the results

to the estimation of the Wigner{Ville spectrum of a process with known support of its expected am-

biguity function. It is shown that in this setup the minimum variance unbiased (MVUB) estimator is

given by a quadratic form with prototype operator whose spreading function equals the given indicator

function of the support of the process' expected ambiguity function.

Estimation Target. We consider the estimation of a real{valued, time{frequency shift invariant,

time{varying spectrum, which can be written as the expectation of a quadratic form:

P

x

(t; f) = E

nD

P

(t;f)

x; x

Eo

;

where P

(t;f)

is a time{frequency shifted version of the self{adjoint prototype operator P. Recall that

we de�ne time{frequency shifting of operators by

P

(t;f)

= S

(t;f)

PS

(t;f)�

;

where S

(�;�)

is an arbitrary version of the �{parametrized family of unitary time{frequency shift

operators (see (B.4)).

Observation. We assume that x(t) is a circular complex, zero{mean, nonstationary Gaussian process

with trace{class correlation kernel:

(R

x

) (t; s) = E fx(t)x

�

(s)g ; with trR

x

<1:

We furthermore consider a noisy observation of x(t),

y(t) = x(t) + n(t) with E fn(t)n

�

(s)g = �

2

n

�(t� s);

where n(t) is statistically independent, circular complex Gaussian white noise.

Estimator. Similar to the estimation target, the estimator is a quadratic form now in terms of the

observation and based on a di�erent prototype operator:

b

P

y

(t; f) =

D

b

P

(t;f)

y; y

E

;

In the bias/variance computation it is important to have a brief formal notation in order to avoid

lengthy expressions. We thus perform the computation in terms of the correlation operators of the

processes and the prototype operators of the estimator and the estimation target. By way of prepa-

ration we �rst note the following identity:

P

x

(t; f) = E

nD

P

(t;f)

x; x

Eo

= tr

n

R

x

P

(t;f)

o

=

D

R

x

;P

(t;f)

E

; (D.1)

where tr denotes the trace operator (see (A.8) ) and the inner product is a Hilbert{Schmidt compatible

operator inner product (see (A.8)). We mention the inner product equivalence (D.1) since by using

unitary operator representations such as the spreading function of P or spreading function of R

x

(which is equivalent to the expected ambiguity function of x(t)), we shall replace the discrete trace

operation by integral representations. Furthermore note the trace invariance

trP

(t;f)

= trP;
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we shall henceforth suppress the (t; f) superscript wherever possible due to this trace invariance.

Trace Normalization. As a simple side{constraint we require that the original time{frequency

representation (estimation target) \distributes" the Karhunen{Loeve eigenvalues of the process over

the time{frequency plane:

Z

t

Z

f

P

x

(t; f)dt df = trR

x

; (D.2)

which corresponds to the deterministic requirement of an energy distribution:

Z

t

Z

f

D

P

(t;f)

x; x

E

dt df = kxk

2

: (D.3)

These equivalent requirements (D.2) and (D.3) can be reduced to a trace normalization of the prototype

operator since

Z

t

Z

f

tr

n

P

(t;f)

R

x

o

dt df = tr

8

>

<

>

:

0

B

@

Z

t

Z

f

P

(t;f)

dt df

1

C

A

R

x

9

>

=

>

;

= trP trR

x

; (D.4)

which follows immediately from the fact that

Z

t

Z

f

P

(t;f)

dt df = tr fPg I; (D.5)

which is easy to check via the trace formula of the Weyl correspondence (C.14). We henceforth restrict

our attention to prototype operators that are Hilbert{Schmidt (HS) and satisfy:

trP = tr

b

P = 1:

At this point it should be already mentioned that the prototype operator of a time{frequency dis-

tribution may not be HS as e.g. in case of the Wigner distribution. We shall however prove in this

appendix that �nite variance estimators always have prototype operators that are HS. Moreover, we

also show that the Wigner{Ville spectrum of a process with both limited nonstationarity and �nite

temporal correlation can always be written as a quadratic form of a Hilbert{Schmidt operator.

In the derivation of the unbiased estimators we shall represent the prototype operators via their

spreading functions (for de�nition and properties see Appendix B). The HS requirement carries over

to

Z

�

Z

�

jS

P

(�; �)j

2

d� d� �M <1;

and the trace normalization is re
ected in

S

P

(0; 0) = 1:

Expectation of the Estimate. With the statistical independence of signal and noise we have

R

y

= R

x

+ �

2

n

I: (D.6)

(The correlation operator of stationary white noise is a scalar multiple of the identity, which is denoted

by I.) Based on (D.6) and (D.1) we immediately obtain the expectation of our estimate:

E

n

b

P

y

(t; f)

o

= tr

n

b

P

(t;f)

(R

x

+ �

2

n

I)

o

= E

n

b

P

x

(t; f)

o

+ �

2

n

tr

b

P: (D.7)
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Bias. According to (D.7), the bias of the estimator is given by

B(t; f)

def

= E

n

b

P

y

(t; f)

o

� P

x

(t; f) = tr

n

e

P

(t;f)

R

x

o

+ �

2

n

tr

b

P; (D.8)

where we have introduced the bias operator

e

P as follows:

e

P

def

=

b

P�P:

Using the Schwarz inequality for operator inner products and triangle inequality we immediately get

a tight bound for the maximum bias:

kBk

1

� k

e

PkkR

x

k+ �

2

n

�

�

�

tr

b

P

�

�

�

:

However, in the choice of an estimator the maximum bias alone is no su�cient criterion, since an

estimator that achieves small kBk

1

may still lead to a comparatively large average bias. We thus

de�ne an integrated squared bias as the total integral of the time{frequency dependent part of the

squared bias:

B

2

0

def

=

Z

t

Z

f

n

B

2

(t; f)� �

4

n

tr

2

b

P

o

dt df:

In the computation of B

2

0

we can use (D.4) but we have to evaluate another nontrivial time{frequency

integral, namely over tr

2

f

e

P

(t;f)

R

x

g. In order to obtain a useful expression we introduce the spreading

functions of both P and R

x

(where the latter is just the expected ambiguity function of the process,

EA

x

(�; �)):

Z

t

Z

f

tr

2

n

e

P

(t;f)

R

x

o

dt df =

Z

t

Z

f

�

�

�

D

S

e

P

(t;f)

; EA

x

E

�

�

�

2

dt df

=

Z

t

Z

f

Z

�

1

Z

�

1

Z

�

2

Z

�

2

S

e

P

(�

1

; �

1

)EA

x

(�

1

; �

1

)

�S

�

e

P

(�

2

; �

2

)EA

�

x

(�

2

; �

2

)e

�j2�[(�

1

��

2

)t�(�

1

��

2

)f ]

dt df d�

1

d�

1

d�

2

d�

2

=

Z

�

Z

�

�

�

�

S

e

P

(�; �)

�

�

�

2

jEA

x

(�; �)j

2

d� d�

=

�

�

�

�

S

e

P

�

�

�

2

; jEA

x

j

2

�

: (D.9)

With (D.4) and (D.9) we �nally obtain the following result for the integrated bias:

B

2

0

=

�

�

�

�

S

e

P

�

�

�

2

; jEA

x

j

2

�

+ 2�

2

n

tr

b

Ptr

e

P trR

x

:

Due to (D.8) unbiased estimation requires at �rst exact knowledge of the noise level �

2

n

. Presupposing

this a priori knowledge we can distinguish two basic classes of unbiased estimators:

1. Estimators based on an \unbiased" prototype operator, such that

e

P = 0. This is a trivial

solution that will be usually inadmissible as it leads to in�nite variance (in case e.g. of the

Wigner distribution).

2. Estimators with \biased" prototype operator where the bias operator satis�es

S

e

P

(�; �)EA

x

(�; �) � 0: (D.10)
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Variance. The computation of the variance of the estimator, which is de�ned as

V

2

(t; f)

def

= E

n

b

P

2

y

(t; f)

o

�

�

E

n

b

P

y

(t; f)

o�

2

; (D.11)

is less straightforward.

In the determination of E

n

b

P

2

y

(t; f)

o

one has to evaluate the following sum of the expectation of

various combinations of quadratic forms in terms of the self{adjoint operator

b

P

(t;f)

E

n

b

P

2

y

(t; f)

o

= E

�

D

b

P

(t;f)

x; x

E

2

+

D

b

P

(t;f)

n; n

E

2

+ 2

D

b

P

(t;f)

x; x

ED

b

P

(t;f)

n; n

E

+

D

b

P

(t;f)

x; n

E

2

+

D

b

P

(t;f)

n; x

E

2

+ 2

D

b

P

(t;f)

x; n

ED

b

P

(t;f)

n; x

E

�

: (D.12)

The �rst term requires to compute the following expectation:

E

�

�

�

�

D

b

P

(t;f)

x; x

E

�

�

�

2

�

= E

8

<

:

Z

t

1

Z

t

2

Z

t

3

Z

t

4

h(t

1

; t

2

)x(t

2

)x

�

(t

1

)h(t

3

; t

4

)x(t

4

)x

�

(t

3

)dt

1

dt

2

dt

3

dt

4

9

=

;

;

(D.13)

where h(t

1

; t

2

) is the kernel of P

(t;f)

(for notational simplicity we have intermediately suppressed the

superscript). The here appearing fourth{order moment of a Gaussian process can be written in terms

of the correlation functions by using Isserlis' formula for the special case of circular complex processes:

E fx(t

2

)x

�

(t

1

)x(t

3

)x

�

(t

4

)g = (R

x

) (t

2

; t

1

) (R

x

) (t

3

; t

4

) + (R

x

) (t

2

; t

4

) (R

x

) (t

3

; t

1

):

The expectation of (D.13) is thus split into a sum of two terms:

E

�

�

�

�

D

b

P

(t;f)

x; x

E

�

�

�

2

�

=

8

<

:

Z

t

1

Z

t

2

h(t

1

; t

2

) (R

x

) (t

2

; t

1

)dt

1

dt

2

9

=

;

8

<

:

Z

t

3

Z

t

4

h(t

3

; t

4

) (R

x

) (t

4

; t

3

)dt

3

dt

4

9

=

;

+

Z

t

1

Z

t

2

Z

t

3

Z

t

4

h(t

1

; t

2

) (R

x

) (t

2

; t

3

)h(t

3

; t

4

) (R

x

) (t

4

; t

1

)dt

1

dt

2

dt

3

dt

4

= tr

2

n

b

P

(t;f)

R

x

o

+ tr

�

�

b

P

(t;f)

R

x

�

2

�

: (D.14)

Using this result we can immediately evaluate the second term of (D.12) (recall R

n

= �

2

n

I):

E

�

�

�

�

D

b

P

(t;f)

n; n

E

�

�

�

2

�

= �

4

n

�

tr

2

b

P+ tr

b

P

2

�

; (D.15)

it is time{frequency invariant.

The third term can be written as

E

nD

b

P

(t;f)

x; x

ED

b

P

(t;f)

n; n

Eo

= �

2

n

tr

b

P tr

n

b

P

(t;f)

R

x

o

: (D.16)

For the fourth term,

E

�

�

�

�

D

b

P

(t;f)

x; n

E

�

�

�

2

�

= E

8

<

:

Z

t

1

Z

t

2

Z

t

3

Z

t

4

h(t

1

; t

2

)x(t

2

)n

�

(t

1

)h(t

3

; t

4

)x(t

3

)n

�

(t

3

)dt

1

dt

2

dt

3

dt

4

9

=

;

;

and the �fth term,

E

�

�

�

�

D

b

P

(t;f)

n; x

E

�

�

�

2

�

= E

8

<

:

Z

t

1

Z

t

2

Z

t

3

Z

t

4

h(t

1

; t

2

)n(t

2

)x

�

(t

1

)h(t

3

; t

4

)n(t

4

)x

�

(t

3

)dt

1

dt

2

dt

3

dt

4

9

=

;

;
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we note that for circular complex variables:

E fx(t

1

)x(t

2

)g = 0

thus,

E

�

�

�

�

D

b

P

(t;f)

x; n

E

�

�

�

2

�

= E

�

�

�

�

D

b

P

(t;f)

n; x

E

�

�

�

2

�

= 0: (D.17)

The last term of (D.12) can be evaluated as follows:

E

nD

b

P

(t;f)

x; n

ED

b

P

(t;f)

n; x

Eo

= E

8

<

:

Z

t

1

Z

t

2

Z

t

3

Z

t

4

h(t

1

; t

2

)x(t

2

)n

�

(t

1

)h(t

3

; t

4

)n(t

4

)x

�

(t

3

)dt

1

dt

2

dt

3

dt

4

9

=

;

=

Z

t

1

Z

t

2

Z

t

3

h(t

1

; t

2

) (R

x

) (t

2

; t

3

)h(t

3

; t

1

)dt

1

dt

2

dt

3

= �

2

n

tr

�

�

b
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Inserting (D.14), (D.15), (D.16), (D.17), (D.18) in (D.12) we �nally obtain the following expression

for the variance of the estimator
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The Schwarz inequality for the operator inner product leads to the following tight bound on the

maximum variance:
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:

Just as discussed for the bias, we now obtain an integrated version of the variance. To this end, we

have to evaluate the total time{frequency integral over the two time{frequency{dependent terms of

(D.19). In order to compute the �rst integral we again use the spreading function of both

b

P

(t;f)

and

R

x

. Based on the formula for the spreading function of the composite operators (B.33) we have
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;

which we now use for the �rst variance term integral,
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For the second integral it su�ces to note that
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whence we have with (D.5):
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For the integrated variance we thus obtain a compact result:

V

2

0

def

=

Z

t

Z

f

n

V

2

(t; f)� �

4

n

tr

b

P

2

o

dt df = k

b

Pk

2

�

trR

2

x

+ 2�

2

n

trR

x

�

:

Observe that the maximum variance, the time{frequency invariant variance term and the integrated

variance are proportional to the HS{norm of the prototype operator of the estimator,

b

P. (Note that

the trace of a squared self{adjoint HS{operator equals its HS{norm, i.e., trP

2

= kPk

2

.) Thus we can

a priori exclude a

b

P that is not Hilbert{Schmidt as it leads to in�nite variance. However, as stated

above, the prototype operator of the prominent Wigner{Ville spectrum is not Hilbert{Schmidt. Thus,

at this point we can already exclude �nite{variance unbiased estimation of the Wigner{Ville spectrum

of a general nonstationary process. This is basically a well{known fact for the noiseless observation

[121] and similar to the estimation problem of Priestley's evolutionary spectrum [296].

MVUB Estimator for the WVS. The intuitive idea of smoothing frequency parametrized estimates

in order to reduce the variance is a classical principle of time{invariant spectrum estimation. Of

course, time{invariant spectrum estimation relies on the fundamental implicit a priori knowledge (or

a priori assumption) of stationarity which conceptually allows \total smoothing" in time direction.

It is thus not astonishing that we have to require a smoothness condition on the target of our time{

varying spectral estimator in order to obtain unbiased estimators with �nite{variance. The prototype

operator of the Wigner{Ville spectrum (WVS) can be characterized by

S

P

(�; �) � 1; (D.23)

as has been already discussed it is not Hilbert{Schmidt and the estimation problem only starts to

make sense when we have some additional a priori knowledge on the process at hand.

For the existence of an unbiased, �nite{variance estimator of the WVS we have two requirements:

1. For an unbiased estimate we need to know the noise level �

2

n

.

2. For a �nite{variance unbiased estimate we need to know a spreading constraint with �nite

support area of the process' expected ambiguity function, or with other words, a smoothness

condition on the time{varying spectrum to be estimated.

We henceforth tacitly assume knowledge of the noise level such that the bias term due to noise,

i.e. �

2

n

tr

b

H, can be simply corrected. According to (D.10) the requirement for the bias operator of any

unbiased estimator is:
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Since, S

e

P

(�; �) = S
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(�; �) � S

P

(�; �) = S

b

P

(�; �) � 1, we have the following requirement for the

prototype operator:
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x

(�; �) 6= 0;

arbitrary; where EA

x

(�; �) = 0:

(D.25)



TIME{VARYING SPECTRAL ESTIMATION 151

Now, we understand minimum variance in the sense of the global variance measure as de�ned by

the integrated variance V

2

0

. We thus have to select the unbiased estimator whose prototype operator

achieves minimum Hilbert{Schmidt norm. This optimization turns out to be trivial since the Hilbert{

Schmidt norm is equal to the total integral of the magnitude squared spreading function:

k

b

Pk

2

=
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�
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(�; �)j

2

d� d�: (D.26)

The minimum{variance unbiased (MVUB) quadratic estimator is thus obtained by setting the spread-

ing function of the prototype operator zero wherever possible:
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(D.27)

This result is in obvious accordance with intuition, we may loosely characterize the MVUB estimator

by \smooth as much as possible without introducing bias".

Minimum Norm Weyl{Heisenberg Expansion. In the context of this thesis we have a nice

abstract interpretation of the MVUB estimator in terms of Weyl{Heisenberg operator decomposition

as follows.

The correlation operator of a nonstationary process with support{restricted EA

x

(�; �) admits

a decomposition in terms of a weighted integral of time{frequency shifted versions of a prototype

operator where the weight function is the WVS:
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x

(�; �);

(D.28)

this decomposition is highly ambiguous w.r.t. the choice of the prototype operator. Now, there exist a

minimum norm Weyl{Heisenberg decomposition that is marked out by the minimum Hilbert{Schmidt

norm of its prototype operator:

b

P = arg min

P

kPk

2

subject to R

x

=

Z

t

Z

f

EW

x

(t; f)P

(t;f)

dt df;

which leads just to the prototype operator of the MVUB estimator.

Extension to Real{Part of Generalized WVS. The MVUB estimator for the WVS can be easily

extended to the expected real{part of the generalized WVS. Since one has
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the prototype operator of the MVUB estimator for RefEW

(�)

x

(t; f)g is a slightly modi�ed version of

the MVUB estimator for the WVS:
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It should be emphasized that for a small spread of EA

x

(�; �) the cosine factor will be negligible.
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APPENDIX E: LTV System Identi�cation

In this appendix we derive bias and variance expressions regarding the estimation of a Weyl{Heisenberg

LTV system representation under the assumption of the observation of (i) a circular complex, station-

ary white Gaussian input process and (ii) an output process contaminated by statistically independent,

circular complex, stationary white Gaussian noise. We furthermore discuss the resulting theoretical

MVUB estimator for the generalized Weyl symbol (includes the usual time{varying transfer function

of Zadeh and the Weyl symbol) of a system with known support of the spreading function. The

MVUB estimator is a quadratic form in the observation with a prototype operator whose generalized

spreading function is given by the known support of the system's spreading function.

While the main results are analog to the case of auto{spectral analysis as discussed in Appendix

D, the details are di�erent.

Estimation Target. The estimation target is an arbitrary Weyl{Heisenberg system representation

T

H

(t; f) characterized by a prototype operator P in the form:

T

H

(t; f) =

D

H;P

(t;f)

E

:

The generalized Weyl symbol L

(�)

H

(t; f) is a subclass of such system representations.

Based on a zero{mean, circular complex, Gaussian, stationary white input process with variance

Efx(t)x

�

(s)g = �

2

x

�(t � s);

the output signal

y(t) = (Hx) (t)

is a zero{mean, circular complex nonstationary process and the estimation problem is equivalent to

the time{varying cross spectral estimation of a time{frequency shift{invariant signal representation:
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where R

yx

is the cross{correlation operator of the processes y(t); x(t) and P

yx

(t; f) is a quadratic

time{frequency shift invariant cross signal representation with prototype operator P.

Observation. We assume a noiseless observation of the input process x(t) and a noisy observation

of the output process:

y(t) = (Hx) (t) + n(t);

where n(t) is circular complex, zero{mean, stationary white Gaussian noise with correlation function:
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�
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n

�(t� s):

Estimator. The estimator is based on a generally di�erent prototype operator
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Bias. The expectation of the estimate can be compactly written as
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The bias is accordingly given by:

B(t; f)

def

= E

n

b

T

H

(t; f)

o

� T

H

(t; f) =

D

H;

e

P

(t;f)

E

; (E.1)
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where we have introduced a \biased" prototype operator de�ned as:

e

P

def

=

b

P�P:

The maximum bias is proportional to the HS norm of the bias operator:

kBk

1

� k

e

PkkHk;

note that this is in general no tight bound. Whenever one considers a priori knowledge on the support

of the spreading function of the system H then it is possible to de�ne unbiased estimators with

k

e

Pk 6= 0.

We furthermore compute the integrated squared bias in terms of the spreading functions of the

involved operators:
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Just as in the auto{case of spectral estimation we have two essentially di�erent ways for unbiased

estimation:

� Unbiased estimators with

b

P = P. With regard to the estimation of the generalized Weyl symbol,

this trivial version of unbiased estimation does not lead to �nite variance estimators as will be

discussed subsequently.

� Unbiased estimators with

b

P 6= P but nonoverlapping spreading functions of the bias operator

and the system
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This is the practically interesting case for the estimation of a system's generalized Weyl symbol

with known support of the spreading function.

Variance. The variance of the estimator is de�ned as
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Due to our assumption of a zero{mean and statistically independent noise there remain two terms in

the expectation of the magnitude squared estimate:
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For the �rst term we need to evaluate the following expectation:
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Based on Isserli's fourth order moment formula for complex Gaussian variables we have
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where in the last step we have used the fact that
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The computation of the second term of (E.2) is straightforward:
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Such that �nally we get a compact result for the variance of the estimator based on (E.4) and (E.6):
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The maximum variance is proportional to the HS norm of the prototype operator:
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:

We also compute an integrated variance by integrating over the time{frequency{dependent part of the
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variance:
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where we have used the generally valid Weyl{Heisenberg resolution of the identity in the form of:
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It is seen that just as in the auto{case of spectral estimation all reasonable variance measures, the

constant variance term, the integrated variance and the maximum variance, are proportional to the

Hilbert{Schmidt norm of the estimator's prototype operator. Thus, given a class of unbiased esti-

mators one has to select the estimator with minimum HS norm of its prototype operator in order to

minimize the variance both in a local and global sense.

MVUB Estimator for L

(�)

H

(t; f). It is well{known that identi�cation of a general, i.e., unconstrained

LTV system is no reasonably de�ned statistical task [191]. In this context, we view LTV system

identi�cation as the estimation of a unitary Weyl{Heisenberg representation of the system as is given

by the generalized Weyl symbol. The prototype operator can be de�ned by
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it is seen that P is never Hilbert{Schmidt irrespective of the choice of �. Hence, as expected, we

can exclude �nite{variance estimation of the GWS of a general LTV system. However, based upon a

priori knowledge about a spreading constraint of the system H one can obtain an optimum unbiased

estimator in the sense of minimum global and local variance. Analog to the case of auto{spectrum

estimation the prototype operator of the optimum estimator is given by:

S

(�)

b

P

MVUB

(�)

(�; �) =

(

1; where S

H

(�; �) 6= 0;

0; where S

H

(�; �) = 0;

(E.8)

and it can be interpreted as a minimum norm Weyl{Heisenberg expansion of the system H

b

P

MV UB

(�) = arg min

P

kPk

2

; subject to H =

Z

t

Z

f

L

(�)

H

(t; f)P

(t;f)

(�)dt df:
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APPENDIX F: Time{Frequency Signal Representations

F.0.1 Short{Time Fourier Transform/Spectrogram

In the analysis of many natural signals such as speech or audio, one is interested in obtaining a

temporally localized information about the spectral content of the signal. To this end, it is near at hand

to apply a sliding window prior to the Fourier transform. This yields the short{time Fourier transform,

a classical tool for time{varying signal processing [135, 7, 283, 251, 27, 250, 264, 14, 145, 249, 207, 115]:

STFT

(
)

x

(t; f)

def

=

Z

t

0

x(t

0

)


�

(t

0

� t)e

�j2�ft

0

dt

0

; (F.1)

where 
(t) is the underlying analysis window. The STFT STFT

(
)

(t; f) can be interpreted in various

di�erent ways:

� As the Fourier transform of the �{dependent windowed signals x(t)
(t� �).

� As the output of a �lter bank with impulse responses h

(f)

(�) = 
(�)e

j2��f

, i.e., modulated

versions of the analysis window 
(t).

� As the coe�cients of an expansion of the signal x(t) time{frequency shifted versions of the

analysis window 
(t),

x(t) =

Z

�

Z

�

D

x;S

(�;�)




E�

S

(�;�)




�

(t)d�d� =

Z

�

Z

�

STFT

(
)

x

(�; �)

�

S

(�;�)




�

(t)d�d�;

(F.2)

where S

(�;�)

is the time{frequency shift operator (cf. (A.21)). This shows that the signal can be

recovered from its STFT. Here and in all of the following results concerning the STFT, k
k

2

= 1

is presupposed.

The STFT preserves inner signal products in the following sense:

D

STFT

(
)

x

; STFT

(
)

y

E

= hx; yi ; k
k

2

= 1: (F.3)

Spectrogram. The STFT as a complex{valued signal representation is inappropriate for subjective

signal analysis. The squared magnitude of the STFT, the spectrogram [202, 2, 8, 293]

SPEC

(
)

x

(t; f) =

�

�

�

STFT

(
)

x

(t; f)

�

�

�

2

(F.4)

may be interpreted as a time{frequency{parametrized energy distribution since

Z

t

Z

f

SPEC

(
)

x

(t; f)dtdf = kxk

2

: (F.5)

Note furthermore that the spectrogram is time{frequency shift{invariant in the following sense:

SPEC

(
)

S

(�;�)

x

(t; f) = SPEC

(
)

x

(t� �; f � �):

Representation via Time{Frequency{Shifted Projection Operator. In the context of this

thesis it is furthermore illuminating to write the spectrogram formally as a quadratic form

SPEC

(
)

x

(t; f) =

D

P

(t;f)




x; x

E

;

whereP

(t;f)




is the rank{one projection operator onto the time{frequency shifted versions of the analysis

window.
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F.0.2 Gabor Expansion

The short{time Fourier transform entails considerable redundancy due to the fact that time{frequency

shifted versions of the analysis window are highly linearly dependent. This redundancy can be removed

(or at least largely reduced) by sampling the STFT on a rectangular grid,

G

(
)

x

(m; k)

def

=

Z

t

0

x(t

0

)


�

(t

0

�mT )e

�j2�kFt

0

dt

0

; (F.6)

where T and F denote the time and frequency sampling periods, respectively. This is a signal analysis

point of view. Note, however, that Gabor's original idea [134] starts from a signal synthesis point of

view, postulating a signal expansion in the form of

x(t) =

X

m

X

k

G

(
)

x

(m; k) g(t �mT )e

j2�kFt

; (F.7)

where g(t) is the so{called Gabor synthesis window or, alternatively, Gabor logon [24, 153, 174, 177,

281, 282, 128, 366, 263, 392, 206, 131, 391, 129, 288]. The Gabor expansion theory is mathematically

equivalent to the concept of \coherent states" is it appears in mathematical physics [175, 274, 66, 6,

292, 69]. It should be emphasized that (i) validity of (F.7) imposes certain constraints on the sampling

density and the synthesis window g(t) [18, 28, 31] and (ii) the analysis window 
(t) (and thus the

coe�cients G

(
)

x

(m; k)) may not be uniquely de�ned [291, 290, 307, 72, 181, 309, 308]. An in{depth

discussion of these questions is beyond the scope of this appendix. However, for the context of this

work it is interesting to emphasize the relevance of the fundamental threshold

TF = 1; (F.8)

which is usually called critical density of the Gabor expansion. This choice was suggested in the original

work of Gabor, who was inspired by heuristic, information theoretic considerations. Nowadays, it is

well{known that his idea makes theoretical sense in so far as one can indeed span the whole L

2

(R) via a

critical Gabor family fg

(mT;kF )

g for TF = 1. However, the Balian{Low theorem [68] essentially shows

the nonexistence of a pair of \nice" (�nite spectral and temporal second order moments) analysis

and synthesis windows such that (F.7) works in the critical case TF = 1. Moreover, for the critical

density, the numerical stability of the representation is poor. Hence, in practice one has to consider

an oversampled Gabor expansion with density,

TF < 1:

F.0.3 Generalized Wigner Distribution

The spectrogram as a time{varying signal spectrum has the fundamental de�ciency to depend on the

arbitrary choice of a window function. One way to avoid the arbitrary choice of a window is to start

with an ad hoc de�nition of a time{varying signal spectrum. By far the most prominent de�nition of a

time{varying signal spectrum is the Wigner distribution [370, 76, 23, 51, 52, 55, 26, 41, 34, 229, 35, 13]

W

x

(t; f)

def

=

Z

�

x

�

t +

�

2

�

x

�

�

t�

�

2

�

e

�j2�f�

d�: (F.9)

Another classical de�nition is the Rihaczek distribution [302]

R

x

(t; f)

def

=

Z

�

x(t)x

�

(t� �)e

�j2�f�

d� = x(t)X

�

(f)e

�j2�ft

: (F.10)
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The Wigner distribution and the Rihaczek distribution share a number of attractive properties [159].

These representations can written in a uni�ed way by de�ning an �{parametrized generalized (cross)

Wigner distribution (GWD) [53, 161, 176]

W

(�)

x;y

(t; f)

def

=

Z

�

x

�

t +

�

1

2

� �

�

�

�

y

�

�

t�

�

1

2

+ �

�

�

�

e

�j2�f�

d�: (F.11)

The GWD W

(�)

x

(t; f) reduces to the Wigner distribution for � = 0 and to the Rihaczek distribution

for � = 1=2. In the present work we always presuppose

j�j � 1=2:

Note that the spectrogram can be written as a smoothed GWD,

S

(
)

x

(t; f) = W

(�)

x

(t; f) � �W

(�)�




(�t;�f): (F.12)

We mention three properties of the GWD that are speci�cally relevant for this work (more prop-

erties can be found in the classical paper [51]):

� Sesquilinear Form. The GWD preserves inner signal products in the sense of a unitary,

sesquilinear map (\Moyal's formula")

D

W

(�)

x

1

;y

1

;W

(�)

x

2

;y

2

E

= hx

1

; x

2

i hy

1

; y

2

i

�

: (F.13)

� Time{Frequency Shift{Covariance. A time{frequency shift of the signal results in a corre-

sponding shift of the GWD,

W

(�)

S

(�;�)

x

(t; f) = W

(�)

x

(t� �; f � �): (F.14)

� Integral. The total integral yields the signal's energy:

Z

t

Z

f

W

(�)

x

(t; f) dt df =

Z

t

jx(t)j

2

dt = kxk

2

: (F.15)

F.0.4 Generalized Ambiguity Function

The implicit or explicit use of time{frequency shifted versions of a prototype signal appears in di�erent

applications such as signal analysis, �ltering, sonar/radar, and digital communication. In any of these

applications the following question is important: How does the inner product of a signal x(t) and its

time{frequency shifted version

x

(�;�)

def

= (S

(�;�)

x)(t) = x(t� �)e

j2��t

depend on the time and frequency shifts � and �, respectively. This dependence can be formally rep-

resented by the asymmetrical ambiguity function, also called time{frequency autocorrelation function

(the meaning of the superscript will be clari�ed soon) [371, 339, 338, 285, 220, 17, 320, 321, 350, 333,

15, 222, 16, 349] which is de�ned as:

A

(1=2)

x

(�; �)

def

=

D

x; x

(�;�)

E

=

Z

t

x(t)x

�

(t� �)e

�j2��t

dt: (F.16)

In the context of this work we shall need the fact that the ambiguity function can be seen as an

invertible one{to{one mapping of the signal's rank{one product x(t)x

�

(t

0

) onto the correlative time{

frequency plane [157]. The inversion formula is then given by

3

:

x(t)x

�

(t

0

) =

Z

�

A

(1=2)

x

(t� t

0

; �)e

j2��t

d�: (F.17)

3

The signal x(t) itself is uniquely determined by the rank{one product x(t)x

�

(t

0

) up to a constant phase factor.
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The freedom in the de�nition of a time{frequency shift operator leads to a corresponding freedom

in the de�nition of an ambiguity function. We have most prominently the just mentioned asymmetrical

ambiguity function (F.16) and the symmetrical ambiguity function

4

,

A

(0)

x

(�; �)

def

=

Z

t

x

�

t +

�

2

�

x

�

�

t�

�

2

�

e

�j2��t

dt: (F.18)

Analog to the introduction of the generalized Wigner distribution, one can treat these de�nitions in

parallel by using the family of the generalized (cross{)ambiguity function
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e
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dt: (F.19)

In most applications one is merely interested in the (squared) magnitude of the ambiguity functions

which is fortunately invariant w. r. t. �,

�
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�
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2

: (F.20)

The ambiguity functions satisfy a number of useful properties [159]. The ambiguity function is the

fundamental time{frequency working tool in this thesis, it leads to a compact formulation of the main

results. We here mention just those properties which are of speci�c interest in our context:

� Mutual Relation. Any member of the family A

(�)

x

(�; �) can be expressed in terms of the

symmetrical ambiguity function multiplied by an �{dependent unimodular factor:

A

(�)

x

(�; �) = A

(0)

x

(�; �)e

�j2����

: (F.21)

� Sesquilinear Form. The generalized ambiguity function preserves inner signal products in the

sense of a unitary, sesquilinear map:
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: (F.22)

� Fourier Correspondence to the GWD. The generalized ambiguity function is the symplectic

Fourier transform to the generalized Wigner distribution,

A

(�)

x;y

(�; �) = F

t!�

F

�1

f!�

W

(�)

x;y

(t; f): (F.23)

� Temporal/Spectral Correlation. As a time{frequency correlation function, A

(�)

x

(�; �) is

consistent with the conventional (�{invariant) temporal and spectral correlation functions, re-

spectively:

A

(�)

x

(�; 0) =

Z

t

x(t)x

�

(t� �)dt; (F.24)
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(�)

x

(0; �) =

Z

f

X(f)X

�

(f � �)df: (F.25)

� Time{frequency Shifting. Time{frequency shifting of a signal corresponds to a modulation

of its ambiguity function:

A

(�)

S

(t;f)

x

(�; �) = A

(�)

x

(�; �)e

�j2�(�t��f)

: (F.26)

Hence, a time{frequency shift of the signal leaves the magnitude of the generalized ambiguity

function unchanged:
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: (F.27)

4

The underlying de�nition of the symmetrical time{frequency shift operator is discussed in the Appendix B.
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� Maximum. The generalized ambiguity function takes on its maximum in the origin (as expected

for a two{dimensional autocorrelation function)

�
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= kxk
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� Radar Uncertainty Principle. The volume under the magnitude{squared ambiguity function

equals the squared energy of the signal:
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By the combined consideration of (F.28) and (F.29),
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it gets obvious that the ambiguity function of any signal cannot be arbitrarily concentrated

about the origin. This property is usually referred to as \radar uncertainty principle" because

it forbids the existence of a radar pulse with ideally concentrated

�

�

�

A

(�)

x

(�; �)

�

�

�

2

. (Such a signal

would be desirable for the classical radar problem.)

� Temporal/Spectral Moments. In the origin, the second derivatives of the ambiguity function

equal the temporal and spectral moments:
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One can use these properties to approximate A

(�)

x

(�; �) via Taylor's formula (valid for small � ,�

and real{valued x(t)):
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Notation

List of Abbreviations

EAF : : : : : : : : : : : : : : : : : : : : : : : :Expected Ambiguity Function.

GSF : : : : : : : : : : : : : : : : : : : : : : : : Generalized Spreading Function.

GWD : : : : : : : : : : : : : : : : : : : : : : :Generalized Wigner Distribution.

GWS : : : : : : : : : : : : : : : : : : : : : : : Generalized Weyl Symbol.

GWVS : : : : : : : : : : : : : : : : : : : : : :Generalized Wigner{Ville Spectrum.

HS : : : : : : : : : : : : : : : : : : : : : : : : : :Hilbert{Schmidt.

KL : : : : : : : : : : : : : : : : : : : : : : : : : :Karhunen{Loeve.

LFI : : : : : : : : : : : : : : : : : : : : : : : : : Linear Frequency{Invariant.

LTI : : : : : : : : : : : : : : : : : : : : : : : : : Linear Time{Invariant (Linear Translation{Invariant).

LTV : : : : : : : : : : : : : : : : : : : : : : : : Linear Time{Varying.

MMSE : : : : : : : : : : : : : : : : : : : : : :Minimum Mean{Squared Error.

MVUB : : : : : : : : : : : : : : : : : : : : : :Minimum Variance Unbiased.

STFT : : : : : : : : : : : : : : : : : : : : : : :Short{Time Fourier Transform.

TFDMA : : : : : : : : : : : : : : : : : : : : Time{Frequency Division Multiple Access.

WH : : : : : : : : : : : : : : : : : : : : : : : : :Weyl{Heisenberg.

WVS : : : : : : : : : : : : : : : : : : : : : : : Wigner{Ville Spectrum.

WSSUS : : : : : : : : : : : : : : : : : : : : :Wide{Sense Stationary Uncorrelated Scattering.

List of Important Symbols

( )

�

: : : : : : : : : : : : : : : : : : : : : : : : Complex conjugation, adjoint operator.

( )

(�;�)

: : : : : : : : : : : : : : : : : : : : : Time{frequency superscript with di�erent meaning for

(i) a signal as x

(�;�)

(t) = x(t� �)e

j2��t

,

(ii) the time{frequency shift operator S

(�;�)

by S

(�;�)

x = x

(�;�)

, and

(iii) for a general operator in the sense of shifting its symbol:

H

(�;�)

def

= S

(�;�)

HS

(�;�)�

.

� : : : : : : : : : : : : : : : : : : : : : : : : : : : Parameter of the generalized Weyl correspondence and the associated

de�nitions, always j�j < 1=2 .

A

(�)

x

(�; �); A

(�)

x;y

(�; �) : : : : : : : : Generalized auto and cross ambiguity function, respectively, see (F.19).

B

H

(f; s) : : : : : : : : : : : : : : : : : : : :Bifrequency function of LTV system (see(4.4)).

�(t) : : : : : : : : : : : : : : : : : : : : : : : : :Delta distribution.
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�

kl

: : : : : : : : : : : : : : : : : : : : : : : : : : Kronecker's delta function.

Ef g : : : : : : : : : : : : : : : : : : : : : : : :Expectation operator.

EA

(�)

x

(t; f); EA

(�)

x;y

(�; �) : : : : :Expected generalized auto and cross ambiguity function, respectively,

see (2.60)

ES

x

(t; f) : : : : : : : : : : : : : : : : : : : :Evolutionary spectrum of a nonstationary process, see (2.36).

ESPEC

(
)

x

(t; f) : : : : : : : : : : : : :Physical spectrum of a nonstationary process, see (2.16).

EW

(�)

x

(t; f); EW

(�)

x;y

(t; f) : : : :Expected generalized auto and cross Wigner distribution, respectively,

see (2.62).

f; � : : : : : : : : : : : : : : : : : : : : : : : : : Frequency.

F : : : : : : : : : : : : : : : : : : : : : : : : : : :Frequency Period.

F

x

: : : : : : : : : : : : : : : : : : : : : : : : : : Square root of spectral moment of a signal x(t) (see p. 43).

F : : : : : : : : : : : : : : : : : : : : : : : : : : :Fourier transform de�ned as (F

t!f

x) (f) =

R

t

x(t)e

�j2�ft

dt.


(t) : : : : : : : : : : : : : : : : : : : : : : : : :STFT/Gabor analysis window.

g(t) : : : : : : : : : : : : : : : : : : : : : : : : : STFT/Gabor synthesis window.

G

(
)

x

(m; k) : : : : : : : : : : : : : : : : : : :Gabor coe�cient, with signal x(t) based on a normalized analysis

window 
(t), see (3.29).

h(t; s) : : : : : : : : : : : : : : : : : : : : : : : Impulse response of a linear system, kernel of a linear integral operator,

see (4.3).

h

2

(t; �) : : : : : : : : : : : : : : : : : : : : : :Alternative form of the impulse response of a linear system, see (4.2).

H : : : : : : : : : : : : : : : : : : : : : : : : : : :Linear operator, usually Hilbert{Schmidt unless otherwise speci�ed.

I : : : : : : : : : : : : : : : : : : : : : : : : : : : : Identity operator.

M(t; f) : : : : : : : : : : : : : : : : : : : : : Multiplier function for STFT{based linear time{varying systems.

M

�

: : : : : : : : : : : : : : : : : : : : : : : : : Modulation operator acting as (M

�

x) (t) = x(t)e

j2��t

.

O(�) : : : : : : : : : : : : : : : : : : : : : : : :Bachmann{Landau O{notation (used only for asymptotical results valid

for � ! 0, where q(�) = O(�) means that q(�) � K� for su�ciently

small � where K is a �{independent constant).

P : : : : : : : : : : : : : : : : : : : : : : : : : : :Orthogonal projection operator, see (A.13) or, more generally, a

prototype operator.

P




: : : : : : : : : : : : : : : : : : : : : : : : : :Rank{one projection onto the function 
 2 L

2

(R).

P


;g

: : : : : : : : : : : : : : : : : : : : : : : : Rank{one operator with the singular functions 
; g 2 L

2

(R) (the kernel

is given by (P)(t; t

0

) = 
(t)g

�

(t

0

)).

L

(�)

H

(t; f) : : : : : : : : : : : : : : : : : : : :Generalized Weyl symbol of a linear operator; without superscript:

Weyl symbol, see (C.1)

�

[�T;T ]

(t) : : : : : : : : : : : : : : : : : : : Indicator function (0/1{valued) of the interval [�T; T ] � R

R

x

(t; f); R

x;y

(t; f) : : : : : : : : : : :Auto and cross Rihaczek distribution, respectively, see (F.10).

R

x

: : : : : : : : : : : : : : : : : : : : : : : : : :Correlation operator, its kernel is the autocorrelation function of a

nonstationary process, see the footnote on page 6.
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�

H

: : : : : : : : : : : : : : : : : : : : : : : : : :Total spread of underspread operator, see (4.14)

�

x

: : : : : : : : : : : : : : : : : : : : : : : : : : (i) Total spread of underspread process (2.66), (ii) In Appendix E: �

2

x

denotes the power spectral density of the input process.

S

(�;�)

: : : : : : : : : : : : : : : : : : : : : : : :Time{frequency shift operator, see Section 4.2.1.

S

x;y

(f) : : : : : : : : : : : : : : : : : : : : : :Cross power density spectrum of two stationary processes.

S

(�)

H

(�; �) : : : : : : : : : : : : : : : : : : : :Generalized spreading function of a linear operator, see (B.10).

SPEC

(
)

x

(t; f) : : : : : : : : : : : : : : :Spectrogram of x(t) with window 
(t) (the magnitude{squared STFT).

STFT

(
)

x

(t; f) : : : : : : : : : : : : : : :Short{time Fourier transform of x(t) with window 
(t), see (F.1).

t; � : : : : : : : : : : : : : : : : : : : : : : : : : :Time.

T : : : : : : : : : : : : : : : : : : : : : : : : : : :Time Period.

T

(
)

H

(t; f) : : : : : : : : : : : : : : : : : : : :Short{time transfer function (lower WH symbol, see (4.38)).

T

�

: : : : : : : : : : : : : : : : : : : : : : : : : :Translation operator acting as (Tx) (t) = x(t� �)

T

x

: : : : : : : : : : : : : : : : : : : : : : : : : : Square root of temporal moment of a signal x(t) (see p. 43).

trH : : : : : : : : : : : : : : : : : : : : : : : : :Trace of the operator H, see (A.27).

W

(�)

x

(t; f);W

(�)

x;y

(t; f) : : : : : : : Generalized auto and cross Wigner distribution, respectively; without

superscript: Wigner distribution in particular, see (F.11).

x(t) : : : : : : : : : : : : : : : : : : : : : : : : :Signal, usually a function 2 L

2

(R).

X(f) : : : : : : : : : : : : : : : : : : : : : : : :Fourier transform (spectrum) of signal x(t).

Z

H

(t; f) : : : : : : : : : : : : : : : : : : : : :Zadeh's time{varying transfer function or, equivalently, Kohn{Nirenberg

symbol of a linear operator, Z

H

(t; f) = L

(1=2)

H

(t; f), see (4.22).

� All sums and integrals go from �1 to 1 unless otherwise speci�ed.

� The inner product is de�ned as usual

hx; yi

def

=

Z

t

x(t)y

�

(t)dt and hh; gi

def

=

Z

t

Z

s

h(t; s)g

�

(t; s)dt ds

� The signal norm is de�ned as

kxk

2

def

= hx; xi:

� The (Hilbert{Schmidt) operator inner product is de�ned as usual via the kernels

hH;Gi =

Z

t

Z

s

(H)(t; s)(G)

�

(t; s)dtds:

� The operator norm is (unusually) de�ned as the Hilbert{Schmidt norm

kHk

2

def

= hH;Hi:

The standard operator norm (which induces the uniform operator topology) is denoted by

kHk

1

def

= sup

�

kHxk

kxk

: x 6= 0

�

:
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Bargmann transform, 127
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Bernstein's inequality, 23

Bias,

of spectrogram based spectral estimation, 41

of time{varying spectral estimate, 152

of transfer function estimate, 154

Bifrequency function, 65, 137

Biorthogonality condition, 87

Chirp signal, 59, 131

Correlation operator, 6

Critical grid, 29, 157

Critical spread, 29, 107, 121

Cross{ambiguity function, 159

Cross{channel interference, 92

Cross{Wigner distribution, 158

Cyclostationary process, 21

Delay{Doppler spread function, 66

Duration of a signal, 44
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distribution, 102

generalized, 1

Expected ambiguity function, 17

generalized, 25

interpretation 19

interrelation with time{varying spectra, 25

of underspread process, 26

of various classes of processes, 24

Expected Wigner distribution, 12

Evolutionary Spectrum, 15

Finite{rank approximation, 129

Fourier transform, 5

Gabor expansion, 76, 157

Gelfand transform, 76

Generalized evolutionary spectrum, 16

Generalized inverse, 102

Generalized Wigner{Ville spectrum, 12, 140

Generalized Weyl correspondence, 140

Hilbert{Schmidt operator, 129

Hotelling transform, 1

Impulse response, 65

Input{output relation, 65, 71, 144

Innovations system, 64

Intersymbol interference, 92

Janssen representation, 139

Jointly underspread operators, 70, 108

Jointly underspread processes, 26, 32

Karhunen{Loeve transform, 6, 11

based Wiener �ltering, 9

derivation, 8

Karhunen{Loeve eigenvalues, 7, 10, 13, 20, 29

Karhunen{Loeve subspace, 29

Kohn{Nirenberg symbol, 71, 76, 140

Laplace transform, 1

Linear operator, 128

Linear frequency{invariant (LFI) system, 66, 68

Linear time{invariant (LTI) system, 5, 68

Linear time{varying system, 64

Locally compact abelian groups, 127

Locally stationary process, 24

Lower symbol, 82

Matched Gaussian function, 114

Matched grid, 29

Matched window, 48, 79

Matching rule, 45, 79

Matrix representation of linear operator, 128

Minimum{mean squared error (MMSE) �ltering, 6

(see also Wiener �lter)

Minimum{norm deconvolution, 49, 83

Minimum{norm Weyl{Heisenberg expansion, 106

Modulation operator, 134

Moment, spectral or temporal of a signal, 43, 160

Moyal's formula, 158

Multiplicative modi�cation of the STFT, 85, 100,

112

Multiplicity of eigenvalues, 107

Multiwindow method

for spectral estimation, 57

for �ltering, 94

Nonstationary environment 1, (see also linear time{

varying system, nonstationary process)

Nonstationary process, 6

Normal operator, 130

Operator algebra, 102

Operator composition (Operator product), 102, 139

Operator norm, 80

Overspread operator, 32, 121

Physical Spectrum, 10, 31, 43

operator theoretic formulation 10

relation to KL transform 11

Periodically time{varying system, 76

Planck's constant, 127

Positivity of the Wigner{Ville spectrum, 115
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Projective representation, 135

Prototype operator, 13, 43, 108, 144

Power spectrum, 5

Principal components, 1

Quasistationary process, 23

Rank{one operator, 87

Rank{one projection operator, 7

Reproducing kernel Hilbert space, 108

Resolution of the identity, 103

Rihaczek distribution, 30

Scattering function, 89

Schr�odinger representation, 135, 127

Self{adjoint operator, 130

Sesquilinear form, 158

Short{time Fourier transform, 156

based �ltering, 84

representation of Weyl{Heisenberg frame oper-

ator, 87

based spectral estimation, 41

global correlation, 36

second{order statistics, 18

statistical optimization, 35

Short{time transfer function, 81

Singular value decomposition, 131

Spectral decomposition, 20, 130

Spectral correlation, 17

Spectrogram, 10, 156

Spreading function, 17, 25

Square root of an operator, 131

Stability, 72, 80, 85, 114

Stochastic sampling principle, 30

Subband coding, 59

Symbolic calculus, 16, 30

Symplectic Fourier transform, 74

System identi�cation, 152

Tapped delay line, 138

Time{division multiple access, 91

Time{frequency correlation function,

of deterministic signal, 158

of stochastic process, 17

of WSSUS system 90

Time{frequency periodic system, 76

Time{frequency shift{covariance, 75

Time{frequency shift operator, 66

Time{frequency shifting of operators, 10

Time{varying power spectrum, 12

Time{varying spectral estimation, 145

Time{varying transfer function, 71, 140

Time{shift operator, 134

Toeplitz operator, 85

Total spread (of underspread operator), 26

Trace class, 132

Trace formula

discrete, 29, 144

continuous, 11, 142

Transfer function (of LTI system), 71 (see also time{

varying transfer function)

Twisted convolution, 26

Twisted product, 121

Uncertainty principle

Heisenberg's, 13, 44

Radar, 160

Underspread,

operator, 108

process, 26

system, 68

threshold, 29

Uniformly modulated process 24

Unitary equivalence, 74

Unitary operator, 131

Upper symbol, 85

Variance,

of time{varying spectral estimate, 149

of transfer function estimate, 154

Weil{Brezin transform, 142

Wentzel{Kramers{Brillouin approximation, 126

Wexler{Raz condition, 87

Weyl correspondence, 140

Weyl{Heisenberg expansion

continuous, 13, 27

discrete, 28

Weyl{Heisenberg frame, 53

Weyl{Heisenberg group, 135

Weyl{Heisenberg symbol, 71, 82, 85

Weyl symbol, 73, 140

White noise

nonstationary, 21

stationary, 18

time{frequency locally, 29

Wide{sense stationary process 5, 21

Wide{sense stationary uncorrelated scattering (WS-

SUS), 89

Wiener �lter,

stationary case, 6

nonstationary case

for commuting covariances, 9

for general nonstationary processes, 6, 16

multiwindow realization for underspread pro-

cesses, 97

numerical experiment, 97

Wiener{Khintchine relation

nonstationary analogue, 25

stationary case, 5

Wigner distribution, 73, 157,

Wigner{Ville spectrum

generalized, 12

of underspread process,

asymptotic equivalence, 31

canonical reformulation, 27

numerical experiment, 32

operator formulation, 13

Wigner{Weyl framework, 73

Zadeh's time{varying transfer function, 71

Zak transform, 77
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